mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-17 01:49:48 +00:00
Merge pull request #492 from RonaldoCMP/master
Test for convexity of 3d polygons
This commit is contained in:
commit
a1ae5a5057
2 changed files with 19 additions and 16 deletions
|
@ -1074,6 +1074,7 @@ function distance_from_plane(plane, point) =
|
|||
let( plane = normalize_plane(plane) )
|
||||
point3d(plane)* point - plane[3];
|
||||
|
||||
|
||||
// Returns [POINT, U] if line intersects plane at one point.
|
||||
// Returns [LINE, undef] if the line is on the plane.
|
||||
// Returns undef if line is parallel to, but not on the given plane.
|
||||
|
@ -1596,7 +1597,6 @@ function circle_circle_tangents(c1,r1,c2,r2,d1,d2) =
|
|||
];
|
||||
|
||||
|
||||
|
||||
// Function: circle_line_intersection()
|
||||
// Usage:
|
||||
// isect = circle_line_intersection(c,r,line,<bounded>,<eps>);
|
||||
|
@ -1629,7 +1629,6 @@ function circle_line_intersection(c,r,line,d,bounded=false,eps=EPSILON) =
|
|||
let( offset = sqrt(r*r-d*d),
|
||||
uvec=unit(line[1]-line[0])
|
||||
) [closest-offset*uvec, closest+offset*uvec]
|
||||
|
||||
)
|
||||
[for(p=isect)
|
||||
if ((!bounded[0] || (p-line[0])*(line[1]-line[0])>=0)
|
||||
|
@ -1637,7 +1636,6 @@ function circle_line_intersection(c,r,line,d,bounded=false,eps=EPSILON) =
|
|||
|
||||
|
||||
|
||||
|
||||
// Section: Pointlists
|
||||
|
||||
|
||||
|
@ -1758,27 +1756,31 @@ function polygon_area(poly, signed=false) =
|
|||
// Usage:
|
||||
// is_convex_polygon(poly);
|
||||
// Description:
|
||||
// Returns true if the given 2D polygon is convex. The result is meaningless if the polygon is not simple (self-intersecting).
|
||||
// If the points are collinear the result is true.
|
||||
// Returns true if the given 2D or 3D polygon is convex.
|
||||
// The result is meaningless if the polygon is not simple (self-intersecting) or non coplanar.
|
||||
// If the points are collinear an error is generated.
|
||||
// Arguments:
|
||||
// poly = Polygon to check.
|
||||
// Example:
|
||||
// is_convex_polygon(circle(d=50)); // Returns: true
|
||||
// is_convex_polygon(rot([50,120,30], p=path3d(circle(1,$fn=50)))); // Returns: true
|
||||
// Example:
|
||||
// spiral = [for (i=[0:36]) let(a=-i*10) (10+i)*[cos(a),sin(a)]];
|
||||
// is_convex_polygon(spiral); // Returns: false
|
||||
function is_convex_polygon(poly) =
|
||||
assert(is_path(poly,dim=2), "The input should be a 2D polygon." )
|
||||
let( l = len(poly) )
|
||||
len([for( i = l-1,
|
||||
c = cross(poly[(i+1)%l]-poly[i], poly[(i+2)%l]-poly[(i+1)%l]),
|
||||
s = sign(c);
|
||||
i>=0 && sign(c)==s;
|
||||
i = i-1,
|
||||
c = i<0? 0: cross(poly[(i+1)%l]-poly[i],poly[(i+2)%l]-poly[(i+1)%l]),
|
||||
s = s==0 ? sign(c) : s
|
||||
) i
|
||||
])== l;
|
||||
assert(is_path(poly), "The input should be a 2D or 3D polygon." )
|
||||
let( lp = len(poly),
|
||||
p0 = poly[0] )
|
||||
assert( lp>=3 , "A polygon must have at least 3 points" )
|
||||
let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] )
|
||||
len(p0)==2
|
||||
? assert( !approx(max(crosses)) && !approx(min(crosses)), "The points are collinear" )
|
||||
min(crosses) >=0 || max(crosses)<=0
|
||||
: let( prod = crosses*sum(crosses),
|
||||
minc = min(prod),
|
||||
maxc = max(prod) )
|
||||
assert( !approx(maxc-minc), "The points are collinear" )
|
||||
minc>=0 || maxc<=0;
|
||||
|
||||
|
||||
// Function: polygon_shift()
|
||||
|
|
|
@ -844,6 +844,7 @@ module test_polygon_area() {
|
|||
module test_is_convex_polygon() {
|
||||
assert(is_convex_polygon([[1,1],[-1,1],[-1,-1],[1,-1]]));
|
||||
assert(is_convex_polygon(circle(r=50,$fn=1000)));
|
||||
assert(is_convex_polygon(rot([50,120,30], p=path3d(circle(1,$fn=50)))));
|
||||
assert(!is_convex_polygon([[1,1],[0,0],[-1,1],[-1,-1],[1,-1]]));
|
||||
}
|
||||
*test_is_convex_polygon();
|
||||
|
|
Loading…
Reference in a new issue