mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-29 16:29:40 +00:00
add trapezoid anchor override and fix trapezoid and rect perimeter anchoring
This commit is contained in:
parent
af72ef3bd5
commit
a4596cb448
3 changed files with 160 additions and 116 deletions
|
@ -1628,7 +1628,7 @@ module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) {
|
|||
// Module: attachable()
|
||||
//
|
||||
// Usage: Square/Trapezoid Geometry
|
||||
// attachable(anchor, spin, two_d=true, size=, [size2=], [shift=], ...) {OBJECT; children();}
|
||||
// attachable(anchor, spin, two_d=true, size=, [size2=], [shift=], [override=], ...) {OBJECT; children();}
|
||||
// Usage: Circle/Oval Geometry
|
||||
// attachable(anchor, spin, two_d=true, r=|d=, ...) {OBJECT; children();}
|
||||
// Usage: 2D Path/Polygon Geometry
|
||||
|
@ -1708,6 +1708,7 @@ module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) {
|
|||
// anchors = If given as a list of anchor points, allows named anchor points.
|
||||
// two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D)
|
||||
// axis = The vector pointing along the axis of a geometry. Default: UP
|
||||
// override = Function that takes an anchor and returns a pair `[position,direction]` to use for that anchor to override the normal one. You can also supply a lookup table that is a list of `[anchor, [position, direction]]` entries. If the direction/position that is returned is undef then the default will be used.
|
||||
// geom = If given, uses the pre-defined (via {{attach_geom()}} geometry.
|
||||
//
|
||||
// Side Effects:
|
||||
|
@ -1892,7 +1893,7 @@ module attachable(
|
|||
offset=[0,0,0],
|
||||
anchors=[],
|
||||
two_d=false,
|
||||
axis=UP,
|
||||
axis=UP,override,
|
||||
geom
|
||||
) {
|
||||
dummy1 =
|
||||
|
@ -1913,7 +1914,7 @@ module attachable(
|
|||
d=d, d1=d1, d2=d2, l=l,
|
||||
vnf=vnf, region=region, extent=extent,
|
||||
cp=cp, offset=offset, anchors=anchors,
|
||||
two_d=two_d, axis=axis
|
||||
two_d=two_d, axis=axis, override=override
|
||||
);
|
||||
m = _attach_transform(anchor,spin,orient,geom);
|
||||
multmatrix(m) {
|
||||
|
@ -2032,7 +2033,7 @@ function reorient(
|
|||
cp=[0,0,0],
|
||||
anchors=[],
|
||||
two_d=false,
|
||||
axis=UP,
|
||||
axis=UP, override,
|
||||
geom,
|
||||
p=undef
|
||||
) =
|
||||
|
@ -2056,7 +2057,7 @@ function reorient(
|
|||
d=d, d1=d1, d2=d2, l=l,
|
||||
vnf=vnf, region=region, extent=extent,
|
||||
cp=cp, offset=offset, anchors=anchors,
|
||||
two_d=two_d, axis=axis
|
||||
two_d=two_d, axis=axis, override=override
|
||||
),
|
||||
$attach_to = undef
|
||||
) _attach_transform(anchor,spin,orient,geom,p);
|
||||
|
@ -2130,6 +2131,7 @@ function named_anchor(name, pos, orient=UP, spin=0) = [name, pos, orient, spin];
|
|||
// anchors = If given as a list of anchor points, allows named anchor points.
|
||||
// two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D)
|
||||
// axis = The vector pointing along the axis of a geometry. Default: UP
|
||||
// override = Function that takes an anchor and returns a pair `[position,direction]` to use for that anchor to override the normal one. You can also supply a lookup table that is a list of `[anchor, [position, direction]]` entries. If the direction/position that is returned is undef then the default will be used.
|
||||
//
|
||||
// Example(NORENDER): Null/Point Shape
|
||||
// geom = attach_geom();
|
||||
|
@ -2177,7 +2179,7 @@ function named_anchor(name, pos, orient=UP, spin=0) = [name, pos, orient, spin];
|
|||
// geom = attach_geom(two_d=true, size=size);
|
||||
//
|
||||
// Example(NORENDER): 2D Trapezoidal Shape
|
||||
// geom = attach_geom(two_d=true, size=[x1,y], size2=x2, shift=shift);
|
||||
// geom = attach_geom(two_d=true, size=[x1,y], size2=x2, shift=shift, override=override);
|
||||
//
|
||||
// Example(NORENDER): 2D Circular Shape
|
||||
// geom = attach_geom(two_d=true, r=r);
|
||||
|
@ -2197,6 +2199,13 @@ function named_anchor(name, pos, orient=UP, spin=0) = [name, pos, orient, spin];
|
|||
// Example(NORENDER): Extruded Region, Anchored by Intersection
|
||||
// geom = attach_geom(region=region, l=length, extent=false);
|
||||
//
|
||||
|
||||
function _local_struct_val(struct, key)=
|
||||
assert(is_def(key),"key is missing")
|
||||
let(ind = search([key],struct)[0])
|
||||
ind == [] ? undef : struct[ind][1];
|
||||
|
||||
|
||||
function attach_geom(
|
||||
size, size2,
|
||||
shift, scale, twist,
|
||||
|
@ -2207,7 +2216,7 @@ function attach_geom(
|
|||
offset=[0,0,0],
|
||||
anchors=[],
|
||||
two_d=false,
|
||||
axis=UP
|
||||
axis=UP, override
|
||||
) =
|
||||
assert(is_bool(extent))
|
||||
assert(is_vector(cp) || is_string(cp))
|
||||
|
@ -2219,12 +2228,15 @@ function attach_geom(
|
|||
two_d? (
|
||||
let(
|
||||
size2 = default(size2, size.x),
|
||||
shift = default(shift, 0)
|
||||
shift = default(shift, 0),
|
||||
over_f = is_undef(override) ? function(anchor) [undef,undef]
|
||||
: is_func(override) ? override
|
||||
: function(anchor) _local_struct_val(override,anchor)
|
||||
)
|
||||
assert(is_vector(size,2))
|
||||
assert(is_num(size2))
|
||||
assert(is_num(shift))
|
||||
["trapezoid", point2d(size), size2, shift, cp, offset, anchors]
|
||||
["trapezoid", point2d(size), size2, shift, over_f, cp, offset, anchors]
|
||||
) : (
|
||||
let(
|
||||
size2 = default(size2, point2d(size)),
|
||||
|
@ -2637,7 +2649,7 @@ function _find_anchor(anchor, geom) =
|
|||
mpt = approx(point2d(anchor),[0,0])? [maxx,0,0] : avep,
|
||||
pos = point3d(cp) + rot(from=RIGHT, to=anchor, p=mpt)
|
||||
) [anchor, pos, anchor, oang]
|
||||
) : type == "trapezoid"? ( //size, size2, shift
|
||||
) : type == "trapezoid"? ( //size, size2, shift, override
|
||||
let(all_comps_good = [for (c=anchor) if (c!=sign(c)) 1]==[])
|
||||
assert(all_comps_good, "All components of an anchor for a rectangle/trapezoid must be -1, 0, or 1")
|
||||
let(
|
||||
|
@ -2646,9 +2658,12 @@ function _find_anchor(anchor, geom) =
|
|||
u = (anchor.y+1)/2, // 0<=u<=1
|
||||
frpt = [size.x/2*anchor.x, -size.y/2],
|
||||
bkpt = [size2/2*anchor.x+shift, size.y/2],
|
||||
pos = point2d(cp) + lerp(frpt, bkpt, u) + point2d(offset),
|
||||
override = geom[4](anchor),
|
||||
pos = default(override[0],point2d(cp) + lerp(frpt, bkpt, u) + point2d(offset)),
|
||||
svec = point3d(line_normal(bkpt,frpt)*anchor.x),
|
||||
vec = anchor.y < 0? (
|
||||
vec = is_def(override[1]) ? override[1]
|
||||
:
|
||||
anchor.y < 0? (
|
||||
anchor.x == 0? FWD :
|
||||
size.x == 0? unit(-[shift,size.y], FWD) :
|
||||
unit((point3d(svec) + FWD) / 2, FWD)
|
||||
|
@ -2658,6 +2673,7 @@ function _find_anchor(anchor, geom) =
|
|||
anchor.x == 0? BACK :
|
||||
size2 == 0? unit([shift,size.y], BACK) :
|
||||
unit((point3d(svec) + BACK) / 2, BACK)
|
||||
|
||||
)
|
||||
) [anchor, pos, vec, 0]
|
||||
) : type == "ellipse"? ( //r
|
||||
|
|
|
@ -2296,24 +2296,27 @@ module hull_points(points, fast=false) {
|
|||
no_children($children);
|
||||
check = assert(is_path(points))
|
||||
assert(len(points)>=3, "Point list must contain 3 points");
|
||||
if (len(points[0])==2)
|
||||
hull() polygon(points=points);
|
||||
else {
|
||||
if (fast) {
|
||||
extra = len(points)%3;
|
||||
faces = [
|
||||
[for(i=[0:1:extra+2])i], // If vertex count not divisible by 3, combine extras with first 3
|
||||
for(i=[extra+3:3:len(points)-3])[i,i+1,i+2]
|
||||
];
|
||||
hull() polyhedron(points=points, faces=faces);
|
||||
} else {
|
||||
faces = hull(points);
|
||||
if (is_num(faces[0])){
|
||||
if (len(faces)<=2) echo("Hull contains only two points");
|
||||
else polyhedron(points=points, faces=[faces]);
|
||||
attachable(){
|
||||
if (len(points[0])==2)
|
||||
hull() polygon(points=points);
|
||||
else {
|
||||
if (fast) {
|
||||
extra = len(points)%3;
|
||||
faces = [
|
||||
[for(i=[0:1:extra+2])i], // If vertex count not divisible by 3, combine extras with first 3
|
||||
for(i=[extra+3:3:len(points)-3])[i,i+1,i+2]
|
||||
];
|
||||
hull() polyhedron(points=points, faces=faces);
|
||||
} else {
|
||||
faces = hull(points);
|
||||
if (is_num(faces[0])){
|
||||
if (len(faces)<=2) echo("Hull contains only two points");
|
||||
else polyhedron(points=points, faces=[faces]);
|
||||
}
|
||||
else polyhedron(points=points, faces=faces);
|
||||
}
|
||||
else polyhedron(points=points, faces=faces);
|
||||
}
|
||||
union();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
201
shapes2d.scad
201
shapes2d.scad
|
@ -112,6 +112,9 @@ module square(size=1, center, anchor, spin) {
|
|||
// Example(2D): "perim" Anchors
|
||||
// rect([40,30], rounding=10, atype="perim")
|
||||
// show_anchors();
|
||||
// Example(2D): "perim" Anchors
|
||||
// rect([40,30], rounding=[-10,-8,-3,-7], atype="perim")
|
||||
// show_anchors();
|
||||
// Example(2D): Mixed Chamferring and Rounding
|
||||
// rect([40,30],rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1);
|
||||
// Example(2D): Called as Function
|
||||
|
@ -120,52 +123,49 @@ module square(size=1, center, anchor, spin) {
|
|||
// move_copies(path) color("blue") circle(d=2,$fn=8);
|
||||
module rect(size=1, rounding=0, atype="box", chamfer=0, anchor=CENTER, spin=0) {
|
||||
errchk = assert(in_list(atype, ["box", "perim"]));
|
||||
size = is_num(size)? [size,size] : point2d(size);
|
||||
size = force_list(size,2);
|
||||
if (rounding==0 && chamfer==0) {
|
||||
attachable(anchor, spin, two_d=true, size=size) {
|
||||
square(size, center=true);
|
||||
children();
|
||||
}
|
||||
} else {
|
||||
pts = rect(size=size, rounding=rounding, chamfer=chamfer);
|
||||
if (atype == "perim") {
|
||||
attachable(anchor, spin, two_d=true, path=pts) {
|
||||
pts_over = rect(size=size, rounding=rounding, chamfer=chamfer, atype=atype, _return_override=true);
|
||||
pts = pts_over[0];
|
||||
override = pts_over[1];
|
||||
attachable(anchor, spin, two_d=true, size=size,override=override) {
|
||||
polygon(pts);
|
||||
children();
|
||||
}
|
||||
} else {
|
||||
attachable(anchor, spin, two_d=true, size=size) {
|
||||
polygon(pts);
|
||||
children();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
function rect(size=1, rounding=0, chamfer=0, atype="box", anchor=CENTER, spin=0) =
|
||||
assert(is_num(size) || is_vector(size))
|
||||
assert(is_num(chamfer) || len(chamfer)==4)
|
||||
assert(is_num(rounding) || len(rounding)==4)
|
||||
function rect(size=1, rounding=0, chamfer=0, atype="box", anchor=CENTER, spin=0, _return_override) =
|
||||
assert(is_num(size) || is_vector(size,2))
|
||||
assert(is_num(chamfer) || is_vector(chamfer,4))
|
||||
assert(is_num(rounding) || is_vector(rounding,4))
|
||||
assert(in_list(atype, ["box", "perim"]))
|
||||
let(
|
||||
anchor=point2d(anchor),
|
||||
size = is_num(size)? [size,size] : point2d(size),
|
||||
complex = rounding!=0 || chamfer!=0
|
||||
size = force_list(size,2),
|
||||
chamfer = force_list(chamfer,4),
|
||||
rounding = force_list(rounding,4)
|
||||
)
|
||||
(rounding==0 && chamfer==0)? let(
|
||||
path = [
|
||||
[ size.x/2, -size.y/2],
|
||||
[-size.x/2, -size.y/2],
|
||||
[-size.x/2, size.y/2],
|
||||
[ size.x/2, size.y/2]
|
||||
]
|
||||
)
|
||||
rot(spin, p=move(-v_mul(anchor,size/2), p=path)) :
|
||||
all_zero(concat(chamfer,rounding),0) ?
|
||||
let(
|
||||
path = [
|
||||
[ size.x/2, -size.y/2],
|
||||
[-size.x/2, -size.y/2],
|
||||
[-size.x/2, size.y/2],
|
||||
[ size.x/2, size.y/2]
|
||||
]
|
||||
)
|
||||
rot(spin, p=move(-v_mul(anchor,size/2), p=path))
|
||||
:
|
||||
assert(all_zero(v_mul(chamfer,rounding),0), "Cannot specify chamfer and rounding at the same corner")
|
||||
let(
|
||||
chamfer = is_list(chamfer)? chamfer : [for (i=[0:3]) chamfer],
|
||||
rounding = is_list(rounding)? rounding : [for (i=[0:3]) rounding],
|
||||
quadorder = [3,2,1,0],
|
||||
quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]],
|
||||
eps = 1e-9,
|
||||
|
@ -176,7 +176,7 @@ function rect(size=1, rounding=0, chamfer=0, atype="box", anchor=CENTER, spin=0)
|
|||
assert(insets_x <= size.x, "Requested roundings and/or chamfers exceed the rect width.")
|
||||
assert(insets_y <= size.y, "Requested roundings and/or chamfers exceed the rect height.")
|
||||
let(
|
||||
path = [
|
||||
corners = [
|
||||
for(i = [0:3])
|
||||
let(
|
||||
quad = quadorder[i],
|
||||
|
@ -191,13 +191,20 @@ function rect(size=1, rounding=0, chamfer=0, atype="box", anchor=CENTER, spin=0)
|
|||
abs(qround) >= eps? [for (j=[0:1:cverts]) let(a=90-j*step) v_mul(polar_to_xy(abs(qinset),a),[sign(qinset),1])] :
|
||||
[[0,0]],
|
||||
qfpts = [for (p=qpts) v_mul(p,qpos)],
|
||||
qrpts = qpos.x*qpos.y < 0? reverse(qfpts) : qfpts
|
||||
)
|
||||
each move(cp, p=qrpts)
|
||||
]
|
||||
) complex && atype=="perim"?
|
||||
reorient(anchor,spin, two_d=true, path=path, p=path) :
|
||||
reorient(anchor,spin, two_d=true, size=size, p=path);
|
||||
qrpts = qpos.x*qpos.y < 0? reverse(qfpts) : qfpts,
|
||||
cornerpt = atype=="box" || (qround==0 && qchamf==0) ? undef
|
||||
: qround<0 || qchamf<0 ? [[0,-qpos.y*min(qround,qchamf)]]
|
||||
: [for(seg=pair(qrpts)) let(isect=line_intersection(seg, [[0,0],qpos],SEGMENT,LINE)) if (is_def(isect) && isect!=seg[0]) isect]
|
||||
)
|
||||
assert(is_undef(cornerpt) || len(cornerpt)==1,"Cannot find corner point to anchor")
|
||||
[move(cp, p=qrpts), is_undef(cornerpt)? undef : move(cp,p=cornerpt[0])]
|
||||
],
|
||||
path = flatten(column(corners,0)),
|
||||
override = [for(i=[0:3])
|
||||
let(quad=quadorder[i])
|
||||
if (is_def(corners[i][1])) [quadpos[quad], [corners[i][1], min(chamfer[quad],rounding[quad])<0 ? [quadpos[quad].x,0] : undef]]]
|
||||
) _return_override ? [reorient(anchor,spin, two_d=true, size=size, p=path, override=override), override]
|
||||
: reorient(anchor,spin, two_d=true, size=size, p=path, override=override);
|
||||
|
||||
|
||||
// Function&Module: circle()
|
||||
|
@ -868,8 +875,12 @@ module right_triangle(size=[1,1], center, anchor, spin=0) {
|
|||
// rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
|
||||
// chamfer = The Length of the chamfer faces at the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
|
||||
// flip = If true, negative roundings and chamfers will point forward and back instead of left and right. Default: `false`.
|
||||
// atype = The type of anchoring to use with `anchor=`. Valid opptions are "box" and "perim". This lets you choose between putting anchors on the rounded or chamfered perimeter, or on the square bounding box of the shape. Default: "box"
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
||||
// Anchor Types:
|
||||
// box = Anchor is with respect to the rectangular bounding box of the shape.
|
||||
// perim = Anchors are placed along the rounded or chamfered perimeter of the shape.
|
||||
// Examples(2D):
|
||||
// trapezoid(h=30, w1=40, w2=20);
|
||||
// trapezoid(h=25, w1=20, w2=35);
|
||||
|
@ -893,9 +904,17 @@ module right_triangle(size=[1,1], center, anchor, spin=0) {
|
|||
// trapezoid(h=30, w1=60, w2=40, rounding=-5, flip=true);
|
||||
// Example(2D): Mixed Chamfering and Rounding
|
||||
// trapezoid(h=30, w1=60, w2=40, rounding=[5,0,-10,0],chamfer=[0,8,0,-15],$fa=1,$fs=1);
|
||||
// Example(2D): default anchors for roundings
|
||||
// trapezoid(h=30, w1=100, ang=[66,44],rounding=5) show_anchors();
|
||||
// Example(2D): default anchors for negative roundings are still at the trapezoid corners
|
||||
// trapezoid(h=30, w1=100, ang=[66,44],rounding=-5) show_anchors();
|
||||
// Example(2D): "perim" anchors are at the tips of negative roundings
|
||||
// trapezoid(h=30, w1=100, ang=[66,44],rounding=-5, atype="perim") show_anchors();
|
||||
// Example(2D): They point the other direction if you flip them
|
||||
// trapezoid(h=30, w1=100, ang=[66,44],rounding=-5, atype="perim",flip=true) show_anchors();
|
||||
// Example(2D): Called as Function
|
||||
// stroke(closed=true, trapezoid(h=30, w1=40, w2=20));
|
||||
function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0, angle) =
|
||||
function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0, ,atype="box", _return_override, angle) =
|
||||
assert(is_undef(angle), "The angle parameter has been replaced by ang, which specifies trapezoid interior angle")
|
||||
assert(is_undef(h) || is_finite(h))
|
||||
assert(is_undef(w1) || is_finite(w1))
|
||||
|
@ -919,11 +938,12 @@ function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anc
|
|||
w1 = is_def(w1)? w1 : w2 + x1 + x2,
|
||||
w2 = is_def(w2)? w2 : w1 - x1 - x2,
|
||||
shift = first_defined([shift,(x1-x2)/2]),
|
||||
chamfs = is_num(chamfer)? [for (i=[0:3]) chamfer] :
|
||||
assert(len(chamfer)==4) chamfer,
|
||||
rounds = is_num(rounding)? [for (i=[0:3]) rounding] :
|
||||
assert(len(rounding)==4) rounding,
|
||||
srads = [for (i=[0:3]) rounds[i]? rounds[i] : chamfs[i]],
|
||||
chamfer = force_list(chamfer,4),
|
||||
rounding = force_list(rounding,4)
|
||||
)
|
||||
assert(all_zero(v_mul(chamfer,rounding),0), "Cannot specify chamfer and rounding at the same corner")
|
||||
let(
|
||||
srads = chamfer+rounding,
|
||||
rads = v_abs(srads)
|
||||
)
|
||||
assert(w1>=0 && w2>=0 && h>0, "Degenerate trapezoid geometry.")
|
||||
|
@ -947,65 +967,70 @@ function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anc
|
|||
b = a + [hyps[i] * qdirs[i].x * (srads[i]<0 && !flip? 1 : -1), 0]
|
||||
) b
|
||||
],
|
||||
cpath = [
|
||||
each (
|
||||
corners = [
|
||||
(
|
||||
let(i = 0)
|
||||
rads[i] == 0? [base[i]] :
|
||||
srads[i] > 0? arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i], 90], r=rads[i]) :
|
||||
flip? arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i],-90], r=rads[i]) :
|
||||
arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],90], r=rads[i])
|
||||
rads[i] == 0? [base[i]]
|
||||
: srads[i] > 0? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i], 90], r=rads[i])
|
||||
: flip? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i],-90], r=rads[i])
|
||||
: arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],90], r=rads[i])
|
||||
),
|
||||
each (
|
||||
(
|
||||
let(i = 1)
|
||||
rads[i] == 0? [base[i]] :
|
||||
srads[i] > 0? arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[90,180+angs[i]], r=rads[i]) :
|
||||
flip? arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[270,180+angs[i]], r=rads[i]) :
|
||||
arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[90,angs[i]], r=rads[i])
|
||||
rads[i] == 0? [base[i]]
|
||||
: srads[i] > 0? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[90,180+angs[i]], r=rads[i])
|
||||
: flip? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[270,180+angs[i]], r=rads[i])
|
||||
: arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[90,angs[i]], r=rads[i])
|
||||
),
|
||||
each (
|
||||
(
|
||||
let(i = 2)
|
||||
rads[i] == 0? [base[i]] :
|
||||
srads[i] > 0? arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],270], r=rads[i]) :
|
||||
flip? arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],90], r=rads[i]) :
|
||||
arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i],-90], r=rads[i])
|
||||
rads[i] == 0? [base[i]]
|
||||
: srads[i] > 0? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],270], r=rads[i])
|
||||
: flip? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],90], r=rads[i])
|
||||
: arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i],-90], r=rads[i])
|
||||
),
|
||||
each (
|
||||
(
|
||||
let(i = 3)
|
||||
rads[i] == 0? [base[i]] :
|
||||
srads[i] > 0? arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[-90,angs[i]], r=rads[i]) :
|
||||
flip? arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[90,angs[i]], r=rads[i]) :
|
||||
arc(n=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[270,180+angs[i]], r=rads[i])
|
||||
rads[i] == 0? [base[i]]
|
||||
: srads[i] > 0? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[-90,angs[i]], r=rads[i])
|
||||
: flip? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[90,angs[i]], r=rads[i])
|
||||
: arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[270,180+angs[i]], r=rads[i])
|
||||
),
|
||||
],
|
||||
path = reverse(cpath)
|
||||
) true //simple // force regular anchoring
|
||||
? reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, p=path)
|
||||
: reorient(anchor,spin, two_d=true, path=path, p=path);
|
||||
path = reverse(flatten(corners)),
|
||||
override = [for(i=[0:3])
|
||||
if (atype!="box" && srads[i]!=0)
|
||||
srads[i]>0?
|
||||
let(dir = unit(base[i]-select(base,i-1)) + unit(base[i]-select(base,i+1)),
|
||||
pt=[for(seg=pair(corners[i])) let(isect=line_intersection(seg, [base[i],base[i]+dir],SEGMENT,LINE))
|
||||
if (is_def(isect) && isect!=seg[0]) isect]
|
||||
)
|
||||
[qdirs[i], [pt[0], undef]]
|
||||
: flip?
|
||||
let( dir=unit(base[i] - select(base,i+(i%2==0?-1:1))))
|
||||
[qdirs[i], [select(corners[i],i%2==0?0:-1), dir]]
|
||||
: let( dir = [qdirs[i].x,0])
|
||||
[qdirs[i], [select(corners[i],i%2==0?-1:0), dir]]]
|
||||
) _return_override ? [reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, p=path, override=override),override]
|
||||
: reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, p=path, override=override);
|
||||
|
||||
|
||||
|
||||
module trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0, angle) {
|
||||
path = trapezoid(h=h, w1=w1, w2=w2, ang=ang, shift=shift, chamfer=chamfer, rounding=rounding, flip=flip, angle=angle);
|
||||
union() {
|
||||
simple = true; //chamfer==0 && rounding==0; // force "normal" anchoring for now
|
||||
ang = force_list(ang,2);
|
||||
h = is_def(h)? h : (w1-w2) * sin(ang[0]) * sin(ang[1]) / sin(ang[0]+ang[1]);
|
||||
x1 = is_undef(ang[0]) || ang[0]==90 ? 0 : h/tan(ang[0]);
|
||||
x2 = is_undef(ang[1]) || ang[1]==90 ? 0 : h/tan(ang[1]);
|
||||
w1 = is_def(w1)? w1 : w2 + x1 + x2;
|
||||
w2 = is_def(w2)? w2 : w1 - x1 - x2;
|
||||
shift = first_defined([shift,(x1-x2)/2]);
|
||||
if (simple) {
|
||||
attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift) {
|
||||
polygon(path);
|
||||
children();
|
||||
}
|
||||
} else {
|
||||
attachable(anchor,spin, two_d=true, path=path) {
|
||||
polygon(path);
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
module trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0, atype="box", angle) {
|
||||
path_over = trapezoid(h=h, w1=w1, w2=w2, ang=ang, shift=shift, chamfer=chamfer, rounding=rounding, flip=flip, angle=angle,atype=atype,_return_override=true);
|
||||
path=path_over[0];
|
||||
override = path_over[1];
|
||||
ang = force_list(ang,2);
|
||||
h = is_def(h)? h : (w1-w2) * sin(ang[0]) * sin(ang[1]) / sin(ang[0]+ang[1]);
|
||||
x1 = is_undef(ang[0]) || ang[0]==90 ? 0 : h/tan(ang[0]);
|
||||
x2 = is_undef(ang[1]) || ang[1]==90 ? 0 : h/tan(ang[1]);
|
||||
w1 = is_def(w1)? w1 : w2 + x1 + x2;
|
||||
w2 = is_def(w2)? w2 : w1 - x1 - x2;
|
||||
shift = first_defined([shift,(x1-x2)/2]);
|
||||
attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, override=override) {
|
||||
polygon(path);
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue