mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-20 03:19:39 +00:00
commit
a4d4676b9c
3 changed files with 171 additions and 4 deletions
23
math.scad
23
math.scad
|
@ -744,6 +744,29 @@ function mean(v) =
|
||||||
sum(v)/len(v);
|
sum(v)/len(v);
|
||||||
|
|
||||||
|
|
||||||
|
// Function: ninther()
|
||||||
|
// Usage:
|
||||||
|
// med = ninther(v)
|
||||||
|
// Description:
|
||||||
|
// Finds a value in the input list of numbers `v` that is the median of a
|
||||||
|
// sample of 9 entries of `v`.
|
||||||
|
// It is a much faster approximation of the true median computation.
|
||||||
|
// Arguments:
|
||||||
|
// v = an array of numbers
|
||||||
|
function ninther(v) =
|
||||||
|
let( l=len(v) )
|
||||||
|
l<=4 ? l<=2 ? v[0] : _med3(v[0], v[1], v[2]) :
|
||||||
|
l==5 ? _med3(v[0], _med3(v[1], v[2], v[3]), v[4]) :
|
||||||
|
_med3(_med3(v[0],v[floor(l/6)],v[floor(l/3)]),
|
||||||
|
_med3(v[floor(l/3)],v[floor(l/2)],v[floor(2*l/3)]),
|
||||||
|
_med3(v[floor(2*l/3)],v[floor((5*l/3 -1)/2)],v[l-1]) );
|
||||||
|
|
||||||
|
// the median of a triple
|
||||||
|
function _med3(a,b,c) =
|
||||||
|
a < c ? a < b ? min(b,c) : min(a,c) :
|
||||||
|
b < c ? min(a,c) : min(a,b);
|
||||||
|
|
||||||
|
|
||||||
// Function: convolve()
|
// Function: convolve()
|
||||||
// Usage:
|
// Usage:
|
||||||
// x = convolve(p,q);
|
// x = convolve(p,q);
|
||||||
|
|
136
vectors.scad
136
vectors.scad
|
@ -218,5 +218,141 @@ function vector_axis(v1,v2=undef,v3=undef) =
|
||||||
) unit(cross(w1,w3));
|
) unit(cross(w1,w3));
|
||||||
|
|
||||||
|
|
||||||
|
// Section: Vector Searching
|
||||||
|
|
||||||
|
// Function: vp_tree()
|
||||||
|
// Usage:
|
||||||
|
// tree = vp_tree(points, <leafsize>)
|
||||||
|
// Description:
|
||||||
|
// Organizes n-dimensional data into a Vantage Point Tree, which can be
|
||||||
|
// efficiently searched for for nearest matches. The Vantage Point Tree
|
||||||
|
// is an effort to generalize binary search to n dimensions. Constructing the
|
||||||
|
// tree should be O(n log n) and searches should be O(log n), though real life
|
||||||
|
// performance depends on how the data is distributed, and it will deteriorate
|
||||||
|
// for high data dimensions. This data structure is useful when you will be
|
||||||
|
// performing many searches of the same data, so that the cost of constructing
|
||||||
|
// the tree is justified.
|
||||||
|
// .
|
||||||
|
// The vantage point tree at a given level chooses vp, the
|
||||||
|
// "vantage point", and a radius, R, and divides the data based
|
||||||
|
// on distance to vp. Points closer than R go in on branch
|
||||||
|
// of the tree and points farther than R go in the other branch.
|
||||||
|
// .
|
||||||
|
// The tree has the form [vp, R, inside, outside], where vp is
|
||||||
|
// the vantage point index, R is the radius, inside is a
|
||||||
|
// recursively computed tree for the inside points (distance less than
|
||||||
|
// or equal to R from the vantage point), and outside
|
||||||
|
// is a tree for the outside points (distance greater than R from the
|
||||||
|
// vantage point).
|
||||||
|
// .
|
||||||
|
// If the number of points is less than or equal to leafsize then
|
||||||
|
// vp_tree instead returns the list [ind] where ind is a list of
|
||||||
|
// the indices of the points. This means the list has the form
|
||||||
|
// [[i0, i1, i2,...]], so tree[0] is a list of indices. You can
|
||||||
|
// tell that a node is a leaf node by checking if tree[0] is a list.
|
||||||
|
// The leafsize parameter determines how many points can be
|
||||||
|
// store in the leaf nodes. The default value of 25 was found
|
||||||
|
// emperically to be a reasonable option for 3d data searched with vp_search().
|
||||||
|
// .
|
||||||
|
// Vantage point tree is described here: http://web.cs.iastate.edu/~honavar/nndatastructures.pdf
|
||||||
|
// Arguments:
|
||||||
|
// points = list of points to store in the tree
|
||||||
|
// leafsize = maximum number of points to store in the tree's leaf nodes. Default: 25
|
||||||
|
function vp_tree(points, leafsize=25) =
|
||||||
|
assert(is_matrix(points),"points must be a consistent list of data points")
|
||||||
|
_vp_tree(points, count(len(points)), leafsize);
|
||||||
|
|
||||||
|
function _vp_tree(ptlist, ind, leafsize) =
|
||||||
|
len(ind)<=leafsize ? [ind] :
|
||||||
|
let(
|
||||||
|
center = mean(select(ptlist,ind)),
|
||||||
|
cdistances = [for(i=ind) norm(ptlist[i]-center)],
|
||||||
|
vpind = ind[max_index(cdistances)],
|
||||||
|
vp = ptlist[vpind],
|
||||||
|
vp_dist = [for(i=ind) norm(vp-ptlist[i])],
|
||||||
|
r = ninther(vp_dist),
|
||||||
|
inside = [for(i=idx(ind)) if (vp_dist[i]<=r && ind[i]!=vpind) ind[i]],
|
||||||
|
outside = [for(i=idx(ind)) if (vp_dist[i]>r) ind[i]]
|
||||||
|
)
|
||||||
|
[vpind, r, _vp_tree(ptlist,inside,leafsize),_vp_tree(ptlist,outside,leafsize)];
|
||||||
|
|
||||||
|
|
||||||
|
// Function: vp_search()
|
||||||
|
// Usage:
|
||||||
|
// indices = vp_search(points, tree, p, r);
|
||||||
|
// Description:
|
||||||
|
// Search a vantage point tree for all points whose distance from p
|
||||||
|
// is less than or equal to r. Returns a list of indices of the points it finds
|
||||||
|
// in arbitrary order. The input points is a list of points to search and tree is the
|
||||||
|
// vantage point tree computed from that point list. The search should be
|
||||||
|
// around O(log n).
|
||||||
|
// Arguments:
|
||||||
|
// points = points indexed by the vantage point tree
|
||||||
|
// tree = vantage point tree from vp_tree
|
||||||
|
// p = point to search for
|
||||||
|
// r = search radius
|
||||||
|
function _vp_search(points, tree, p, r) =
|
||||||
|
is_list(tree[0]) ? [for(i=tree[0]) if (norm(points[i]-p)<=r) i]
|
||||||
|
:
|
||||||
|
let(
|
||||||
|
d = norm(p-points[tree[0]]) // dist to vantage point
|
||||||
|
)
|
||||||
|
[
|
||||||
|
if (d <= r) tree[0],
|
||||||
|
if (d-r <= tree[1]) each _vp_search(points, tree[2], p, r),
|
||||||
|
if (d+r > tree[1]) each _vp_search(points, tree[3], p, r)
|
||||||
|
];
|
||||||
|
|
||||||
|
function vp_search(points, tree, p, r) =
|
||||||
|
assert(is_list(tree) && (len(tree)==4 || (len(tree)==1 && is_list(tree[0]))), "Vantage point tree not valid")
|
||||||
|
assert(is_matrix(points), "Parameter points is not a consistent point list")
|
||||||
|
assert(is_vector(p,len(points[0])), "Query must be a vector whose length matches the point list")
|
||||||
|
assert(all_positive(r),"Radius r must be a positive number")
|
||||||
|
_vp_search(points, tree, p, r);
|
||||||
|
|
||||||
|
|
||||||
|
// Function: vp_nearest()
|
||||||
|
// Usage:
|
||||||
|
// indices = vp_nearest(points, tree, p, k)
|
||||||
|
// Description:
|
||||||
|
// Search the vantage point tree for the k points closest to point p.
|
||||||
|
// The input points is the list of points to search and tree is
|
||||||
|
// the vantage point tree computed from that point list. The list is
|
||||||
|
// returned in sorted order, closest point first.
|
||||||
|
// Arguments:
|
||||||
|
// points = points indexed by the vantage point tree
|
||||||
|
// tree = vantage point tree from vp_tree
|
||||||
|
// p = point to search for
|
||||||
|
// k = number of neighbors to return
|
||||||
|
function _insert_sorted(list, k, new) =
|
||||||
|
len(list)==k && new[1]>= last(list)[1] ? list
|
||||||
|
: [
|
||||||
|
for(entry=list) if (entry[1]<=new[1]) entry,
|
||||||
|
new,
|
||||||
|
for(i=[0:1:min(k-1,len(list))-1]) if (list[i][1]>new[1]) list[i]
|
||||||
|
];
|
||||||
|
|
||||||
|
function _insert_many(list, k, newlist,i=0) =
|
||||||
|
i==len(newlist) ? list :
|
||||||
|
_insert_many(_insert_sorted(list,k,newlist[i]),k,newlist,i+1);
|
||||||
|
|
||||||
|
function _vp_nearest(points, tree, p, k, answers=[]) =
|
||||||
|
is_list(tree[0]) ? _insert_many(answers, k, [for(entry=tree[0]) [entry, norm(points[entry]-p)]]) :
|
||||||
|
let(
|
||||||
|
d = norm(p-points[tree[0]]),
|
||||||
|
answers1 = _insert_sorted(answers, k, [tree[0],d]),
|
||||||
|
answers2 = d-last(answers1)[1] <= tree[1] ? _vp_nearest(points, tree[2], p, k, answers1) : answers1,
|
||||||
|
answers3 = d+last(answers2)[1] > tree[1] ? _vp_nearest(points, tree[3], p, k, answers2) : answers2
|
||||||
|
)
|
||||||
|
answers3;
|
||||||
|
|
||||||
|
function vp_nearest(points, tree, p, k) =
|
||||||
|
assert(is_int(k) && k>0)
|
||||||
|
assert(k<=len(points), "You requested more results that contained in the set")
|
||||||
|
assert(is_matrix(points), "Parameter points is not a consistent point list")
|
||||||
|
assert(is_vector(p,len(points[0])), "Query must be a vector whose length matches the point list")
|
||||||
|
assert(is_list(tree) && (len(tree)==4 || (len(tree)==1 && is_list(tree[0]))), "Vantage point tree not valid")
|
||||||
|
subindex(_vp_nearest(points, tree, p, k),0);
|
||||||
|
|
||||||
|
|
||||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||||
|
|
16
vnf.scad
16
vnf.scad
|
@ -221,8 +221,8 @@ function vnf_triangulate(vnf) =
|
||||||
// triangles. The default style is an arbitrary, systematic subdivision in the same direction. The "alt" style
|
// triangles. The default style is an arbitrary, systematic subdivision in the same direction. The "alt" style
|
||||||
// is the uniform subdivision in the other (alternate) direction. The "min_edge" style picks the shorter edge to
|
// is the uniform subdivision in the other (alternate) direction. The "min_edge" style picks the shorter edge to
|
||||||
// subdivide for each quadrilateral, so the division may not be uniform across the shape. The "quincunx" style
|
// subdivide for each quadrilateral, so the division may not be uniform across the shape. The "quincunx" style
|
||||||
// adds a vertex in the center of each quadrilateral and creates four triangles, and the "convex" style
|
// adds a vertex in the center of each quadrilateral and creates four triangles, and the "convex" and "concave" styles
|
||||||
// chooses the locally convex subdivision.
|
// chooses the locally convex/concave subdivision.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// points = A list of vertices to divide into columns and rows.
|
// points = A list of vertices to divide into columns and rows.
|
||||||
// caps = If true, add endcap faces to the first AND last rows.
|
// caps = If true, add endcap faces to the first AND last rows.
|
||||||
|
@ -231,7 +231,7 @@ function vnf_triangulate(vnf) =
|
||||||
// col_wrap = If true, add faces to connect the last column to the first.
|
// col_wrap = If true, add faces to connect the last column to the first.
|
||||||
// row_wrap = If true, add faces to connect the last row to the first.
|
// row_wrap = If true, add faces to connect the last row to the first.
|
||||||
// reverse = If true, reverse all face normals.
|
// reverse = If true, reverse all face normals.
|
||||||
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", "min_edge", "quincunx", and "convex".
|
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", "min_edge", "quincunx","convex" and "concave".
|
||||||
// vnf = If given, add all the vertices and faces to this existing VNF structure.
|
// vnf = If given, add all the vertices and faces to this existing VNF structure.
|
||||||
// Example(3D):
|
// Example(3D):
|
||||||
// vnf = vnf_vertex_array(
|
// vnf = vnf_vertex_array(
|
||||||
|
@ -297,7 +297,7 @@ function vnf_vertex_array(
|
||||||
) =
|
) =
|
||||||
assert(!(any([caps,cap1,cap2]) && !col_wrap), "col_wrap must be true if caps are requested")
|
assert(!(any([caps,cap1,cap2]) && !col_wrap), "col_wrap must be true if caps are requested")
|
||||||
assert(!(any([caps,cap1,cap2]) && row_wrap), "Cannot combine caps with row_wrap")
|
assert(!(any([caps,cap1,cap2]) && row_wrap), "Cannot combine caps with row_wrap")
|
||||||
assert(in_list(style,["default","alt","quincunx", "convex","min_edge"]))
|
assert(in_list(style,["default","alt","quincunx", "convex","concave", "min_edge"]))
|
||||||
assert(is_consistent(points), "Non-rectangular or invalid point array")
|
assert(is_consistent(points), "Non-rectangular or invalid point array")
|
||||||
let(
|
let(
|
||||||
pts = flatten(points),
|
pts = flatten(points),
|
||||||
|
@ -358,6 +358,14 @@ function vnf_vertex_array(
|
||||||
: [[i1,i3,i2],[i1,i4,i3]]
|
: [[i1,i3,i2],[i1,i4,i3]]
|
||||||
)
|
)
|
||||||
convexfaces
|
convexfaces
|
||||||
|
: style=="concave"?
|
||||||
|
let( // Find normal for 3 of the points. Is the other point above or below?
|
||||||
|
n = (reverse?-1:1)*cross(pts[i2]-pts[i1],pts[i3]-pts[i1]),
|
||||||
|
concavefaces = n==0 ? [[i1,i4,i3]]
|
||||||
|
: n*pts[i4] <= n*pts[i1] ? [[i1,i4,i2],[i2,i4,i3]]
|
||||||
|
: [[i1,i3,i2],[i1,i4,i3]]
|
||||||
|
)
|
||||||
|
concavefaces
|
||||||
: [[i1,i3,i2],[i1,i4,i3]],
|
: [[i1,i3,i2],[i1,i4,i3]],
|
||||||
// remove degenerate faces
|
// remove degenerate faces
|
||||||
culled_faces= [for(face=faces)
|
culled_faces= [for(face=faces)
|
||||||
|
|
Loading…
Reference in a new issue