Merge pull request #367 from revarbat/revarbat_dev

Revarbat dev
This commit is contained in:
Revar Desmera 2021-01-05 22:38:34 -08:00 committed by GitHub
commit a5945971ae
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 221 additions and 212 deletions

View file

@ -32,7 +32,7 @@ jobs:
- name: Install OpenSCAD - name: Install OpenSCAD
run: | run: |
curl -L -o OpenSCAD.dmg https://files.openscad.org/OpenSCAD-2019.05.dmg curl -L -o OpenSCAD.dmg https://files.openscad.org/snapshots/OpenSCAD-2021.01.04.dmg
hdiutil attach OpenSCAD.dmg hdiutil attach OpenSCAD.dmg
cp -a /Volumes/OpenSCAD/OpenSCAD.app /Applications/ cp -a /Volumes/OpenSCAD/OpenSCAD.app /Applications/

View file

@ -23,8 +23,8 @@ jobs:
- name: Get OpenSCAD Appimage - name: Get OpenSCAD Appimage
run: | run: |
cd $GITHUB_WORKSPACE cd $GITHUB_WORKSPACE
wget https://files.openscad.org/OpenSCAD-2019.05-x86_64.AppImage wget https://files.openscad.org/snapshots/OpenSCAD-2021.01.03.ai6611-a980a3a-x86_64.AppImage
sudo mv OpenSCAD-2019.05-x86_64.AppImage /usr/local/bin/openscad sudo mv OpenSCAD-2021.01.03.*-x86_64.AppImage /usr/local/bin/openscad
sudo chmod +x /usr/local/bin/openscad sudo chmod +x /usr/local/bin/openscad
- name: Run Regression Tests - name: Run Regression Tests
@ -63,8 +63,8 @@ jobs:
- name: Install OpenSCAD - name: Install OpenSCAD
run: | run: |
cd $GITHUB_WORKSPACE cd $GITHUB_WORKSPACE
wget https://files.openscad.org/OpenSCAD-2019.05-x86_64.AppImage wget https://files.openscad.org/snapshots/OpenSCAD-2021.01.03.ai6611-a980a3a-x86_64.AppImage
sudo mv OpenSCAD-2019.05-x86_64.AppImage /usr/local/bin/openscad sudo mv OpenSCAD-2021.01.03.*-x86_64.AppImage /usr/local/bin/openscad
sudo chmod +x /usr/local/bin/openscad sudo chmod +x /usr/local/bin/openscad
- name: Generate Index - name: Generate Index

View file

@ -1005,10 +1005,18 @@ function plane_transform(plane) =
// Arguments: // Arguments:
// plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane. // plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane.
// points = List of points to project // points = List of points to project
// Example(3D): // Example(3D,FlatSpin):
// points = move([10,20,30], p=yrot(25, p=path3d(circle(d=100)))); // points = move([10,20,30], p=yrot(25, p=path3d(circle(d=100, $fn=36))));
// plane = plane3pt([1,0,0],[0,1,0],[0,0,1]); // plane = plane_from_normal([1,0,1]);
// proj = projection_on_plane(plane,points); // proj = projection_on_plane(plane,points);
// color("red") move_copies(points) sphere(d=2,$fn=12);
// color("blue") move_copies(proj) sphere(d=2,$fn=12);
// move(centroid(proj)) {
// rot(from=UP,to=plane_normal(plane)) {
// anchor_arrow(30);
// %cube([120,150,0.1],center=true);
// }
// }
function projection_on_plane(plane, points) = function projection_on_plane(plane, points) =
assert( _valid_plane(plane), "Invalid plane." ) assert( _valid_plane(plane), "Invalid plane." )
assert( is_path(points), "Invalid list of points or dimension." ) assert( is_path(points), "Invalid list of points or dimension." )

View file

@ -128,10 +128,8 @@ module snap_socket(thick, snaplen=5, snapdiam=5, layerheight=0.2, foldangle=90,
// apply_folding_hinges_and_snaps( // apply_folding_hinges_and_snaps(
// thick=3, foldangle=54.74, // thick=3, foldangle=54.74,
// hinges=[ // hinges=[
// for (a=[0,120,240]) each [ // for (a=[0,120,240], b=[-size/2,size/4]) each [
// [100, rot(a,p=[ size/4, 0 ]), a+90], // [200, polar_to_xy(b,a), a+90]
// [100, rot(a,p=[-size/2,-size/2.33]), a+90],
// [100, rot(a,p=[-size/2, size/2.33]), a+90]
// ] // ]
// ], // ],
// snaps=[ // snaps=[
@ -147,10 +145,11 @@ module snap_socket(thick, snaplen=5, snapdiam=5, layerheight=0.2, foldangle=90,
// ] // ]
// ] // ]
// ) { // ) {
// $fn=3;
// difference() { // difference() {
// cylinder(r=size-1, h=3, spin=180, $fn=3); // cylinder(r=size-1, h=3);
// down(0.01) cylinder(r=size/4, h=3.1, spin=0, $fn=3); // down(0.01) cylinder(r=size/4.5, h=3.1, spin=180);
// down(0.01) for (a=[0:120:359.9]) zrot(a) right(size/2) cylinder(r=size/4, h=3.1, spin=180, $fn=3); // down(0.01) for (a=[0:120:359.9]) zrot(a) right(size/2) cylinder(r=size/4.5, h=3.1);
// } // }
// } // }
module apply_folding_hinges_and_snaps(thick, foldangle=90, hinges=[], snaps=[], sockets=[], snaplen=5, snapdiam=5, hingegap=undef, layerheight=0.2) module apply_folding_hinges_and_snaps(thick, foldangle=90, hinges=[], snaps=[], sockets=[], snaplen=5, snapdiam=5, hingegap=undef, layerheight=0.2)

View file

@ -1208,7 +1208,7 @@ module worm(
// Example: Multiple Starts // Example: Multiple Starts
// worm_gear(pitch=5, teeth=36, worm_diam=30, worm_starts=4); // worm_gear(pitch=5, teeth=36, worm_diam=30, worm_starts=4);
// Example: Metric Worm Gear // Example: Metric Worm Gear
// worm_gear(mod=25, teeth=32, worm_diam=30, worm_starts=1); // worm_gear(mod=2, teeth=32, worm_diam=30, worm_starts=1);
// Example: Called as Function // Example: Called as Function
// vnf = worm_gear(pitch=8, teeth=30, worm_diam=30, worm_starts=1); // vnf = worm_gear(pitch=8, teeth=30, worm_diam=30, worm_starts=1);
// vnf_polyhedron(vnf); // vnf_polyhedron(vnf);

View file

@ -28,7 +28,7 @@ include <rounding.scad>
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: // Example:
// half_joiner_clear(spin=-90); // half_joiner_clear();
module half_joiner_clear(h=20, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) module half_joiner_clear(h=20, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{ {
dmnd_height = h*1.0; dmnd_height = h*1.0;
@ -74,8 +74,9 @@ module half_joiner_clear(h=20, w=10, a=30, clearance=0, overlap=0.01, anchor=CEN
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// $slop = Printer specific slop value to make parts fit more closely. // $slop = Printer specific slop value to make parts fit more closely.
// Example: // Examples(FlatSpin):
// half_joiner(screwsize=3, spin=-90); // half_joiner(screwsize=3);
// half_joiner(h=20,w=10,l=10);
module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{ {
dmnd_height = h*1.0; dmnd_height = h*1.0;
@ -133,7 +134,6 @@ module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=
children(); children();
} }
} }
//half_joiner(screwsize=3);
@ -152,8 +152,9 @@ module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: // Examples(FlatSpin):
// half_joiner2(screwsize=3, spin=-90); // half_joiner2(screwsize=3);
// half_joiner2(h=20,w=10,l=10);
module half_joiner2(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) module half_joiner2(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{ {
dmnd_height = h*1.0; dmnd_height = h*1.0;
@ -201,7 +202,7 @@ module half_joiner2(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: // Example:
// joiner_clear(spin=-90); // joiner_clear();
module joiner_clear(h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) module joiner_clear(h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{ {
dmnd_height = h*0.5; dmnd_height = h*0.5;
@ -236,9 +237,9 @@ module joiner_clear(h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER,
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// $slop = Printer specific slop value to make parts fit more closely. // $slop = Printer specific slop value to make parts fit more closely.
// Examples: // Examples(FlatSpin):
// joiner(screwsize=3, spin=-90); // joiner(screwsize=3);
// joiner(w=10, l=10, h=40, spin=-90) cuboid([10, 10*2, 40], anchor=RIGHT); // joiner(w=10, l=10, h=40);
module joiner(h=40, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) module joiner(h=40, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{ {
attachable(anchor,spin,orient, size=[w, 2*l, h]) { attachable(anchor,spin,orient, size=[w, 2*l, h]) {
@ -310,12 +311,12 @@ module joiner_pair_clear(spacing=100, h=40, w=10, a=30, n=2, clearance=0, overla
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// $slop = Printer specific slop value to make parts fit more closely. // $slop = Printer specific slop value to make parts fit more closely.
// Example(FlatSpin):
// joiner_pair(spacing=50, l=10);
// Examples: // Examples:
// joiner_pair(spacing=50, l=10, spin=-90) cuboid([10, 50+10-0.1, 40], anchor=RIGHT); // joiner_pair(spacing=50, l=10, n=3, alternate=false);
// joiner_pair(spacing=50, l=10, n=2, spin=-90); // joiner_pair(spacing=50, l=10, n=3, alternate=true);
// joiner_pair(spacing=50, l=10, n=3, alternate=false, spin=-90); // joiner_pair(spacing=50, l=10, n=3, alternate="alt");
// joiner_pair(spacing=50, l=10, n=3, alternate=true, spin=-90);
// joiner_pair(spacing=50, l=10, n=3, alternate="alt", spin=-90);
module joiner_pair(spacing=100, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) module joiner_pair(spacing=100, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{ {
attachable(anchor,spin,orient, size=[spacing+w, 2*l, h]) { attachable(anchor,spin,orient, size=[spacing+w, 2*l, h]) {
@ -385,19 +386,19 @@ module joiner_quad_clear(xspacing=undef, yspacing=undef, spacing1=undef, spacing
// l = Length of the backing to the joiners. // l = Length of the backing to the joiners.
// a = Overhang angle of the joiners. // a = Overhang angle of the joiners.
// n = Number of joiners in a row. Default: 2 // n = Number of joiners in a row. Default: 2
// alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations. // alternate = If true (default), joiners on each side alternate orientations. If alternate is "alt", do opposite alternating orientations.
// screwsize = Diameter of screwhole. // screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides. // guides = If true, create sliding alignment guides.
// $slop = Printer specific slop value to make parts fit more closely. // $slop = Printer specific slop value to make parts fit more closely.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example(FlatSpin):
// joiner_quad(spacing1=50, spacing2=50, l=10);
// Examples: // Examples:
// joiner_quad(spacing1=50, spacing2=50, l=10, spin=-90) cuboid([50, 50+10-0.1, 40]); // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=false);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=2, spin=-90); // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=true);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=false, spin=-90); // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate="alt");
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=true, spin=-90);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate="alt", spin=-90);
module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=undef, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=undef, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{ {
spacing1 = first_defined([spacing1, xspacing, 100]); spacing1 = first_defined([spacing1, xspacing, 100]);
@ -405,7 +406,7 @@ module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=unde
attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) { attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) {
zrot_copies(n=2) { zrot_copies(n=2) {
back(spacing2/2) { back(spacing2/2) {
joiner_pair(spacing=spacing1, n=n, h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides); joiner_pair(spacing=spacing1, n=n, h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides, alternate=alternate);
} }
} }
children(); children();
@ -430,6 +431,7 @@ module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=unde
// with male dovetails oriented UP and female ones DOWN. // with male dovetails oriented UP and female ones DOWN.
// //
// Arguments: // Arguments:
// gender = A string, "male" or "female", to specify the gender of the dovetail.
// l / length = Length of the dovetail (amount the joint slides during assembly) // l / length = Length of the dovetail (amount the joint slides during assembly)
// h / height = Height of the dovetail // h / height = Height of the dovetail
// w / width = Width (at the wider, top end) of the dovetail before tapering // w / width = Width (at the wider, top end) of the dovetail before tapering
@ -442,11 +444,11 @@ module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=unde
// round = true to round both corners of the dovetail and give it a puzzle piece look. Default: false. // round = true to round both corners of the dovetail and give it a puzzle piece look. Default: false.
// extra = amount of extra length and base extension added to dovetails for unions and differences. Default: 0.01 // extra = amount of extra length and base extension added to dovetails for unions and differences. Default: 0.01
// Example: Ordinary straight dovetail, male version (sticking up) and female version (below the xy plane) // Example: Ordinary straight dovetail, male version (sticking up) and female version (below the xy plane)
// dovetail("male", length=30, width=15, height=8); // dovetail("male", l=30, w=15, h=8);
// right(20) dovetail("female", length=30, width=15, height=8); // right(20) dovetail("female", l=30, w=15, h=8);
// Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.) // Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.)
// dovetail("male", length=30, width=15, height=8, taper=6); // dovetail("male", l=30, w=15, h=8, taper=6);
// right(20) dovetail("female", length=30, width=15, height=8, taper=6); // right(20) dovetail("female", l=30, w=15, h=8, taper=6);
// Example: A block that can link to itself // Example: A block that can link to itself
// diff("remove") // diff("remove")
// cuboid([50,30,10]){ // cuboid([50,30,10]){
@ -467,16 +469,16 @@ module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=unde
// } // }
// Example: Rounding the outside corners is another option // Example: Rounding the outside corners is another option
// diff("remove") // diff("remove")
// cuboid([50,30,10]){ // cuboid([50,30,10]) {
// attach(BACK) dovetail("male", length=10, width=15, height=8,radius=1,$fn=32); // attach(BACK) dovetail("male", length=10, width=15, height=8, radius=1, $fn=32);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,radius=1,$tags="remove",$fn=32); // attach(FRONT, overlap=-0.1) dovetail("female", length=10, width=15, height=8, radius=1, $tags="remove", $fn=32);
// } // }
// Example: Or you can make a fully rounded joint // Example: Or you can make a fully rounded joint
// $fn=32; // $fn=32;
// diff("remove") // diff("remove")
// cuboid([50,30,10]){ // cuboid([50,30,10]){
// attach(BACK) dovetail("male", length=10, width=15, height=8,radius=1.5, round=true); // attach(BACK) dovetail("male", length=10, width=15, height=8,radius=1.5, round=true);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,radius=1.5, round=true, $tags="remove"); // attach(FRONT,overlap=-0.1) dovetail("female", length=10, width=15, height=8,radius=1.5, round=true, $tags="remove");
// } // }
// Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `back_width` may be easier than using a taper angle. // Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `back_width` may be easier than using a taper angle.
// cuboid([50,30,10]) // cuboid([50,30,10])
@ -517,7 +519,7 @@ module dovetail(gender, length, l, width, w, height, h, angle, slope, taper, bac
extra_slop = gender == "female" ? 2*$slop : 0; extra_slop = gender == "female" ? 2*$slop : 0;
width = w + extra_slop; width = w + extra_slop;
height = h + extra_slop; height = h + extra_slop;
back_width = back_width + extra_slop; back_width = u_add(back_width, extra_slop);
front_offset = is_def(taper) ? -extra * tan(taper) : front_offset = is_def(taper) ? -extra * tan(taper) :
is_def(back_width) ? extra * (back_width-width)/length/2 : 0; is_def(back_width) ? extra * (back_width-width)/length/2 : 0;
@ -546,7 +548,7 @@ module dovetail(gender, length, l, width, w, height, h, angle, slope, taper, bac
is_def(back_width) ? (back_width-width) / 2 : 0; is_def(back_width) ? (back_width-width) / 2 : 0;
bigend_points = move([offset,length+2*extra,0], p=smallend_points); bigend_points = move([offset,length+2*extra,0], p=smallend_points);
adjustment = gender == "male" ? -0.01 : 0.01; // Adjustment for default overlap in attach() adjustment = $overlap * (gender == "male" ? -1 : 1); // Adjustment for default overlap in attach()
attachable(anchor,spin,orient, size=[width+2*offset, length, height]) { attachable(anchor,spin,orient, size=[width+2*offset, length, height]) {
down(height/2+adjustment) { down(height/2+adjustment) {

View file

@ -487,6 +487,166 @@ function prismoid(
) reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf); ) reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf);
// Module: rect_tube()
// Usage:
// rect_tube(size, wall, h, [center]);
// rect_tube(isize, wall, h, [center]);
// rect_tube(size, isize, h, [center]);
// rect_tube(size1, size2, wall, h, [center]);
// rect_tube(isize1, isize2, wall, h, [center]);
// rect_tube(size1, size2, isize1, isize2, h, [center]);
// Description:
// Creates a rectangular or prismoid tube with optional roundovers and/or chamfers.
// You can only round or chamfer the vertical(ish) edges. For those edges, you can
// specify rounding and/or chamferring per-edge, and for top and bottom, inside and
// outside separately.
// Note: if using chamfers or rounding, you **must** also include the hull.scad file:
// ```
// include <BOSL2/hull.scad>
// ```
// Arguments:
// size = The outer [X,Y] size of the rectangular tube.
// isize = The inner [X,Y] size of the rectangular tube.
// h|l = The height or length of the rectangular tube. Default: 1
// wall = The thickness of the rectangular tube wall.
// size1 = The [X,Y] side of the outside of the bottom of the rectangular tube.
// size2 = The [X,Y] side of the outside of the top of the rectangular tube.
// isize1 = The [X,Y] side of the inside of the bottom of the rectangular tube.
// isize2 = The [X,Y] side of the inside of the top of the rectangular tube.
// rounding = The roundover radius for the outside edges of the rectangular tube.
// rounding1 = The roundover radius for the outside bottom corner of the rectangular tube.
// rounding2 = The roundover radius for the outside top corner of the rectangular tube.
// chamfer = The chamfer size for the outside edges of the rectangular tube.
// chamfer1 = The chamfer size for the outside bottom corner of the rectangular tube.
// chamfer2 = The chamfer size for the outside top corner of the rectangular tube.
// irounding = The roundover radius for the inside edges of the rectangular tube. Default: Same as `rounding`
// irounding1 = The roundover radius for the inside bottom corner of the rectangular tube.
// irounding2 = The roundover radius for the inside top corner of the rectangular tube.
// ichamfer = The chamfer size for the inside edges of the rectangular tube. Default: Same as `chamfer`
// ichamfer1 = The chamfer size for the inside bottom corner of the rectangular tube.
// ichamfer2 = The chamfer size for the inside top corner of the rectangular tube.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `BOTTOM`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// rect_tube(size=50, wall=5, h=30);
// rect_tube(size=[100,60], wall=5, h=30);
// rect_tube(isize=[60,80], wall=5, h=30);
// rect_tube(size=[100,60], isize=[90,50], h=30);
// rect_tube(size1=[100,60], size2=[70,40], wall=5, h=30);
// rect_tube(size1=[100,60], size2=[70,40], isize1=[40,20], isize2=[65,35], h=15);
// Example: Outer Rounding Only
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, rounding=10, irounding=0, h=30);
// Example: Outer Chamfer Only
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, chamfer=5, ichamfer=0, h=30);
// Example: Outer Rounding, Inner Chamfer
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, rounding=10, ichamfer=8, h=30);
// Example: Inner Rounding, Outer Chamfer
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, chamfer=10, irounding=8, h=30);
// Example: Gradiant Rounding
// include <BOSL2/hull.scad>
// rect_tube(size1=100, size2=80, wall=5, rounding1=10, rounding2=0, irounding1=8, irounding2=0, h=30);
// Example: Per Corner Rounding
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=10, rounding=[0,5,10,15], irounding=0, h=30);
// Example: Per Corner Chamfer
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=10, chamfer=[0,5,10,15], ichamfer=0, h=30);
// Example: Mixing Chamfer and Rounding
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=10, chamfer=[0,5,0,10], ichamfer=0, rounding=[5,0,10,0], irounding=0, h=30);
// Example: Really Mixing It Up
// include <BOSL2/hull.scad>
// rect_tube(
// size1=[100,80], size2=[80,60],
// isize1=[50,30], isize2=[70,50], h=20,
// chamfer1=[0,5,0,10], ichamfer1=[0,3,0,8],
// chamfer2=[5,0,10,0], ichamfer2=[3,0,8,0],
// rounding1=[5,0,10,0], irounding1=[3,0,8,0],
// rounding2=[0,5,0,10], irounding2=[0,3,0,8]
// );
module rect_tube(
size, isize,
h, shift=[0,0], wall,
size1, size2,
isize1, isize2,
rounding=0, rounding1, rounding2,
irounding=0, irounding1, irounding2,
chamfer=0, chamfer1, chamfer2,
ichamfer=0, ichamfer1, ichamfer2,
anchor, spin=0, orient=UP,
center, l
) {
h = first_defined([h,l,1]);
assert(is_num(h), "l or h argument required.");
assert(is_vector(shift,2));
s1 = is_num(size1)? [size1, size1] :
is_vector(size1,2)? size1 :
is_num(size)? [size, size] :
is_vector(size,2)? size :
undef;
s2 = is_num(size2)? [size2, size2] :
is_vector(size2,2)? size2 :
is_num(size)? [size, size] :
is_vector(size,2)? size :
undef;
is1 = is_num(isize1)? [isize1, isize1] :
is_vector(isize1,2)? isize1 :
is_num(isize)? [isize, isize] :
is_vector(isize,2)? isize :
undef;
is2 = is_num(isize2)? [isize2, isize2] :
is_vector(isize2,2)? isize2 :
is_num(isize)? [isize, isize] :
is_vector(isize,2)? isize :
undef;
size1 = is_def(s1)? s1 :
(is_def(wall) && is_def(is1))? (is1+2*[wall,wall]) :
undef;
size2 = is_def(s2)? s2 :
(is_def(wall) && is_def(is2))? (is2+2*[wall,wall]) :
undef;
isize1 = is_def(is1)? is1 :
(is_def(wall) && is_def(s1))? (s1-2*[wall,wall]) :
undef;
isize2 = is_def(is2)? is2 :
(is_def(wall) && is_def(s2))? (s2-2*[wall,wall]) :
undef;
assert(wall==undef || is_num(wall));
assert(size1!=undef, "Bad size/size1 argument.");
assert(size2!=undef, "Bad size/size2 argument.");
assert(isize1!=undef, "Bad isize/isize1 argument.");
assert(isize2!=undef, "Bad isize/isize2 argument.");
assert(isize1.x < size1.x, "Inner size is larger than outer size.");
assert(isize1.y < size1.y, "Inner size is larger than outer size.");
assert(isize2.x < size2.x, "Inner size is larger than outer size.");
assert(isize2.y < size2.y, "Inner size is larger than outer size.");
anchor = get_anchor(anchor, center, BOT, BOT);
attachable(anchor,spin,orient, size=[each size1, h], size2=size2, shift=shift) {
diff("_H_o_L_e_")
prismoid(
size1, size2, h=h, shift=shift,
rounding=rounding, rounding1=rounding1, rounding2=rounding2,
chamfer=chamfer, chamfer1=chamfer1, chamfer2=chamfer2,
anchor=CTR
) {
children();
tags("_H_o_L_e_") prismoid(
isize1, isize2, h=h+0.05, shift=shift,
rounding=irounding, rounding1=irounding1, rounding2=irounding2,
chamfer=ichamfer, chamfer1=ichamfer1, chamfer2=ichamfer2,
anchor=CTR
);
}
children();
}
}
// Module: right_triangle() // Module: right_triangle()
// //
// Usage: // Usage:
@ -859,7 +1019,7 @@ module zcyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, h
// tube(h|l, ir1|id1, ir2|id2, or1|od1, or2|od2, [realign]); // tube(h|l, ir1|id1, ir2|id2, or1|od1, or2|od2, [realign]);
// //
// Arguments: // Arguments:
// h|l = height of tube. (Default: 1) // h / l = height of tube. (Default: 1)
// or = Outer radius of tube. // or = Outer radius of tube.
// or1 = Outer radius of bottom of tube. (Default: value of r) // or1 = Outer radius of bottom of tube. (Default: value of r)
// or2 = Outer radius of top of tube. (Default: value of r) // or2 = Outer radius of top of tube. (Default: value of r)
@ -936,166 +1096,6 @@ module tube(
} }
// Module: rect_tube()
// Usage:
// rect_tube(size, wall, h, [center]);
// rect_tube(isize, wall, h, [center]);
// rect_tube(size, isize, h, [center]);
// rect_tube(size1, size2, wall, h, [center]);
// rect_tube(isize1, isize2, wall, h, [center]);
// rect_tube(size1, size2, isize1, isize2, h, [center]);
// Description:
// Creates a rectangular or prismoid tube with optional roundovers and/or chamfers.
// You can only round or chamfer the vertical(ish) edges. For those edges, you can
// specify rounding and/or chamferring per-edge, and for top and bottom, inside and
// outside separately.
// Note: if using chamfers or rounding, you **must** also include the hull.scad file:
// ```
// include <BOSL2/hull.scad>
// ```
// Arguments:
// size = The outer [X,Y] size of the rectangular tube.
// isize = The inner [X,Y] size of the rectangular tube.
// h|l = The height or length of the rectangular tube. Default: 1
// wall = The thickness of the rectangular tube wall.
// size1 = The [X,Y] side of the outside of the bottom of the rectangular tube.
// size2 = The [X,Y] side of the outside of the top of the rectangular tube.
// isize1 = The [X,Y] side of the inside of the bottom of the rectangular tube.
// isize2 = The [X,Y] side of the inside of the top of the rectangular tube.
// rounding = The roundover radius for the outside edges of the rectangular tube.
// rounding1 = The roundover radius for the outside bottom corner of the rectangular tube.
// rounding2 = The roundover radius for the outside top corner of the rectangular tube.
// chamfer = The chamfer size for the outside edges of the rectangular tube.
// chamfer1 = The chamfer size for the outside bottom corner of the rectangular tube.
// chamfer2 = The chamfer size for the outside top corner of the rectangular tube.
// irounding = The roundover radius for the inside edges of the rectangular tube. Default: Same as `rounding`
// irounding1 = The roundover radius for the inside bottom corner of the rectangular tube.
// irounding2 = The roundover radius for the inside top corner of the rectangular tube.
// ichamfer = The chamfer size for the inside edges of the rectangular tube. Default: Same as `chamfer`
// ichamfer1 = The chamfer size for the inside bottom corner of the rectangular tube.
// ichamfer2 = The chamfer size for the inside top corner of the rectangular tube.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `BOTTOM`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// rect_tube(size=50, wall=5, h=30);
// rect_tube(size=[100,60], wall=5, h=30);
// rect_tube(isize=[60,80], wall=5, h=30);
// rect_tube(size=[100,60], isize=[90,50], h=30);
// rect_tube(size1=[100,60], size2=[70,40], wall=5, h=30);
// rect_tube(size1=[100,60], size2=[70,40], isize1=[40,20], isize2=[65,35], h=15);
// Example: Outer Rounding Only
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, rounding=10, irounding=0, h=30);
// Example: Outer Chamfer Only
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, chamfer=5, ichamfer=0, h=30);
// Example: Outer Rounding, Inner Chamfer
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, rounding=10, ichamfer=8, h=30);
// Example: Inner Rounding, Outer Chamfer
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, chamfer=10, irounding=8, h=30);
// Example: Gradiant Rounding
// include <BOSL2/hull.scad>
// rect_tube(size1=100, size2=80, wall=5, rounding1=10, rounding2=0, irounding1=8, irounding2=0, h=30);
// Example: Per Corner Rounding
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=10, rounding=[0,5,10,15], irounding=0, h=30);
// Example: Per Corner Chamfer
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=10, chamfer=[0,5,10,15], ichamfer=0, h=30);
// Example: Mixing Chamfer and Rounding
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=10, chamfer=[0,5,0,10], ichamfer=0, rounding=[5,0,10,0], irounding=0, h=30);
// Example: Really Mixing It Up
// include <BOSL2/hull.scad>
// rect_tube(
// size1=[100,80], size2=[80,60],
// isize1=[50,30], isize2=[70,50], h=20,
// chamfer1=[0,5,0,10], ichamfer1=[0,3,0,8],
// chamfer2=[5,0,10,0], ichamfer2=[3,0,8,0],
// rounding1=[5,0,10,0], irounding1=[3,0,8,0],
// rounding2=[0,5,0,10], irounding2=[0,3,0,8]
// );
module rect_tube(
size, isize,
h, shift=[0,0], wall,
size1, size2,
isize1, isize2,
rounding=0, rounding1, rounding2,
irounding=0, irounding1, irounding2,
chamfer=0, chamfer1, chamfer2,
ichamfer=0, ichamfer1, ichamfer2,
anchor, spin=0, orient=UP,
center, l
) {
h = first_defined([h,l,1]);
assert(is_num(h), "l or h argument required.");
assert(is_vector(shift,2));
s1 = is_num(size1)? [size1, size1] :
is_vector(size1,2)? size1 :
is_num(size)? [size, size] :
is_vector(size,2)? size :
undef;
s2 = is_num(size2)? [size2, size2] :
is_vector(size2,2)? size2 :
is_num(size)? [size, size] :
is_vector(size,2)? size :
undef;
is1 = is_num(isize1)? [isize1, isize1] :
is_vector(isize1,2)? isize1 :
is_num(isize)? [isize, isize] :
is_vector(isize,2)? isize :
undef;
is2 = is_num(isize2)? [isize2, isize2] :
is_vector(isize2,2)? isize2 :
is_num(isize)? [isize, isize] :
is_vector(isize,2)? isize :
undef;
size1 = is_def(s1)? s1 :
(is_def(wall) && is_def(is1))? (is1+2*[wall,wall]) :
undef;
size2 = is_def(s2)? s2 :
(is_def(wall) && is_def(is2))? (is2+2*[wall,wall]) :
undef;
isize1 = is_def(is1)? is1 :
(is_def(wall) && is_def(s1))? (s1-2*[wall,wall]) :
undef;
isize2 = is_def(is2)? is2 :
(is_def(wall) && is_def(s2))? (s2-2*[wall,wall]) :
undef;
assert(wall==undef || is_num(wall));
assert(size1!=undef, "Bad size/size1 argument.");
assert(size2!=undef, "Bad size/size2 argument.");
assert(isize1!=undef, "Bad isize/isize1 argument.");
assert(isize2!=undef, "Bad isize/isize2 argument.");
assert(isize1.x < size1.x, "Inner size is larger than outer size.");
assert(isize1.y < size1.y, "Inner size is larger than outer size.");
assert(isize2.x < size2.x, "Inner size is larger than outer size.");
assert(isize2.y < size2.y, "Inner size is larger than outer size.");
anchor = get_anchor(anchor, center, BOT, BOT);
attachable(anchor,spin,orient, size=[each size1, h], size2=size2, shift=shift) {
diff("_H_o_L_e_")
prismoid(
size1, size2, h=h, shift=shift,
rounding=rounding, rounding1=rounding1, rounding2=rounding2,
chamfer=chamfer, chamfer1=chamfer1, chamfer2=chamfer2,
anchor=CTR
) {
children();
tags("_H_o_L_e_") prismoid(
isize1, isize2, h=h+0.05, shift=shift,
rounding=irounding, rounding1=irounding1, rounding2=irounding2,
chamfer=ichamfer, chamfer1=ichamfer1, chamfer2=ichamfer2,
anchor=CTR
);
}
children();
}
}
// Module: torus() // Module: torus()
// //
// Description: // Description:

View file

@ -6,7 +6,7 @@
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,512]; BOSL_VERSION = [2,0,517];
// Section: BOSL Library Version Functions // Section: BOSL Library Version Functions