mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-17 01:49:48 +00:00
add full covariance gaussian random vectors
add cholesky fatorization (needed for above, also useful for solving symmetric linear systems.)
This commit is contained in:
parent
71b22e5850
commit
a5ae4879be
2 changed files with 71 additions and 46 deletions
111
math.scad
111
math.scad
|
@ -498,83 +498,73 @@ function rand_int(minval, maxval, N, seed=undef) =
|
||||||
|
|
||||||
// Function: random_points()
|
// Function: random_points()
|
||||||
// Usage:
|
// Usage:
|
||||||
// points = random_points(n, dim, scale, [seed]);
|
// points = random_points([N], [dim], [scale], [seed]);
|
||||||
// See Also: random_polygon(), gaussian_random_points(), spherical_random_points()
|
// See Also: random_polygon(), gaussian_random_points(), spherical_random_points()
|
||||||
// Topics: Random, Points
|
// Topics: Random, Points
|
||||||
// Description:
|
// Description:
|
||||||
// Generate `n` uniform random points of dimension `dim` with data ranging from -scale to +scale.
|
// Generate `N` uniform random points of dimension `dim` with data ranging from -scale to +scale.
|
||||||
// The `scale` may be a number, in which case the random data lies in a cube,
|
// The `scale` may be a number, in which case the random data lies in a cube,
|
||||||
// or a vector with dimension `dim`, in which case each dimension has its own scale.
|
// or a vector with dimension `dim`, in which case each dimension has its own scale.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// n = number of points to generate.
|
// N = number of points to generate. Default: 1
|
||||||
// dim = dimension of the points. Default: 2
|
// dim = dimension of the points. Default: 2
|
||||||
// scale = the scale of the point coordinates. Default: 1
|
// scale = the scale of the point coordinates. Default: 1
|
||||||
// seed = an optional seed for the random generation.
|
// seed = an optional seed for the random generation.
|
||||||
function random_points(n, dim=2, scale=1, seed) =
|
function random_points(N, dim=2, scale=1, seed) =
|
||||||
assert( is_int(n) && n>=0, "The number of points should be a non-negative integer.")
|
assert( is_int(N) && N>=0, "The number of points should be a non-negative integer.")
|
||||||
assert( is_int(dim) && dim>=1, "The point dimensions should be an integer greater than 1.")
|
assert( is_int(dim) && dim>=1, "The point dimensions should be an integer greater than 1.")
|
||||||
assert( is_finite(scale) || is_vector(scale,dim), "The scale should be a number or a vector with length equal to d.")
|
assert( is_finite(scale) || is_vector(scale,dim), "The scale should be a number or a vector with length equal to d.")
|
||||||
let(
|
let(
|
||||||
rnds = is_undef(seed)
|
rnds = is_undef(seed)
|
||||||
? rands(-1,1,n*dim)
|
? rands(-1,1,N*dim)
|
||||||
: rands(-1,1,n*dim, seed) )
|
: rands(-1,1,N*dim, seed) )
|
||||||
is_num(scale)
|
is_num(scale)
|
||||||
? scale*[for(i=[0:1:n-1]) [for(j=[0:dim-1]) rnds[i*dim+j] ] ]
|
? scale*[for(i=[0:1:N-1]) [for(j=[0:dim-1]) rnds[i*dim+j] ] ]
|
||||||
: [for(i=[0:1:n-1]) [for(j=[0:dim-1]) scale[j]*rnds[i*dim+j] ] ];
|
: [for(i=[0:1:N-1]) [for(j=[0:dim-1]) scale[j]*rnds[i*dim+j] ] ];
|
||||||
|
|
||||||
|
|
||||||
// Function: gaussian_rands()
|
// Function: gaussian_rands()
|
||||||
// Usage:
|
// Usage:
|
||||||
// arr = gaussian_rands(mean, stddev, [N], [seed]);
|
// arr = gaussian_rands([N],[mean], [cov], [seed]);
|
||||||
// Description:
|
// Description:
|
||||||
// Returns a random number with a gaussian/normal distribution.
|
// Returns a random number or vector with a Gaussian/normal distribution.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// mean = The average random number returned.
|
// N = the number of points to return. Default: 1
|
||||||
// stddev = The standard deviation of the numbers to be returned.
|
// mean = The average of the random value (a number or vector). Default: 0
|
||||||
// N = Number of random numbers to return. Default: 1
|
// cov = covariance matrix of the random numbers, or variance in the 1D case. Default: 1
|
||||||
// seed = If given, sets the random number seed.
|
// seed = If given, sets the random number seed.
|
||||||
function gaussian_rands(mean, stddev, N=1, seed=undef) =
|
function gaussian_rands(N=1, mean=0, cov=1, seed=undef) =
|
||||||
assert( is_finite(mean+stddev+N) && (is_undef(seed) || is_finite(seed) ), "Input must be finite numbers.")
|
assert(is_num(mean) || is_vector(mean))
|
||||||
let(nums = is_undef(seed)? rands(0,1,N*2) : rands(0,1,N*2,seed))
|
let(
|
||||||
[for (i = count(N,0,2)) mean + stddev*sqrt(-2*ln(nums[i]))*cos(360*nums[i+1])];
|
dim = is_num(mean) ? 1 : len(mean)
|
||||||
|
)
|
||||||
|
assert((dim==1 && is_num(cov)) || is_matrix(cov,dim,dim),"mean and covariance matrix not compatible")
|
||||||
// Function: gaussian_random_points()
|
assert(is_undef(seed) || is_finite(seed))
|
||||||
// Usage:
|
let(
|
||||||
// points = gaussian_random_points(n, dim, mean, stddev, [seed]);
|
nums = is_undef(seed)? rands(0,1,dim*N*2) : rands(0,1,dim*N*2,seed),
|
||||||
// See Also: random_polygon(), random_points(), spherical_random_points()
|
rdata = [for (i = count(dim*N,0,2)) sqrt(-2*ln(nums[i]))*cos(360*nums[i+1])]
|
||||||
// Topics: Random, Points
|
)
|
||||||
// Description:
|
dim==1 ? add_scalar(sqrt(cov)*rdata,mean) :
|
||||||
// Generate `n` random points of dimension `dim` with coordinates absolute value less than `scale`.
|
let(
|
||||||
// The gaussian distribution of all the coordinates of the points will have a mean `mean` and
|
L = cholesky(cov)
|
||||||
// standard deviation `stddev`
|
)
|
||||||
// Arguments:
|
array_group(rdata,dim)*transpose(L);
|
||||||
// n = number of points to generate.
|
|
||||||
// dim = dimension of the points. Default: 2
|
|
||||||
// mean = the gaussian mean of the point coordinates. Default: 0
|
|
||||||
// stddev = the gaussian standard deviation of the point coordinates. Default: 0
|
|
||||||
// seed = an optional seed for the random generation.
|
|
||||||
function gaussian_random_points(n, dim=2, mean=0, stddev=1, seed) =
|
|
||||||
assert( is_int(n) && n>=0, "The number of points should be a non-negative integer.")
|
|
||||||
assert( is_int(dim) && dim>=1, "The point dimensions should be an integer greater than 1.")
|
|
||||||
let( rnds = gaussian_rands(mean, stddev, n*dim, seed=seed) )
|
|
||||||
[for(i=[0:1:n-1]) [for(j=[0:dim-1]) rnds[i*dim+j] ] ];
|
|
||||||
|
|
||||||
|
|
||||||
// Function: spherical_random_points()
|
// Function: spherical_random_points()
|
||||||
// Usage:
|
// Usage:
|
||||||
// points = spherical_random_points(n, radius, [seed]);
|
// points = spherical_random_points([N], [radius], [seed]);
|
||||||
// See Also: random_polygon(), random_points(), gaussian_random_points()
|
// See Also: random_polygon(), random_points(), gaussian_random_points()
|
||||||
// Topics: Random, Points
|
// Topics: Random, Points
|
||||||
// Description:
|
// Description:
|
||||||
// Generate `n` 3D uniformly distributed random points lying on a sphere centered at the origin with radius equal to `radius`.
|
// Generate `n` 3D uniformly distributed random points lying on a sphere centered at the origin with radius equal to `radius`.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// n = number of points to generate.
|
// n = number of points to generate. Default: 1
|
||||||
// radius = the sphere radius. Default: 1
|
// radius = the sphere radius. Default: 1
|
||||||
// seed = an optional seed for the random generation.
|
// seed = an optional seed for the random generation.
|
||||||
|
|
||||||
// See https://mathworld.wolfram.com/SpherePointPicking.html
|
// See https://mathworld.wolfram.com/SpherePointPicking.html
|
||||||
function spherical_random_points(n, radius=1, seed) =
|
function spherical_random_points(N=1, radius=1, seed) =
|
||||||
assert( is_int(n) && n>=1, "The number of points should be an integer greater than zero.")
|
assert( is_int(n) && n>=1, "The number of points should be an integer greater than zero.")
|
||||||
assert( is_num(radius) && radius>0, "The radius should be a non-negative number.")
|
assert( is_num(radius) && radius>0, "The radius should be a non-negative number.")
|
||||||
let( theta = is_undef(seed)
|
let( theta = is_undef(seed)
|
||||||
|
@ -1090,6 +1080,41 @@ function _back_substitute(R, b, x=[]) =
|
||||||
_back_substitute(R, b, concat([newvalue],x));
|
_back_substitute(R, b, concat([newvalue],x));
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// Function: cholesky()
|
||||||
|
// Usage:
|
||||||
|
// L = cholesky(A);
|
||||||
|
// Description:
|
||||||
|
// Compute the cholesky factor, L, of the symmetric positive definite matrix A.
|
||||||
|
// The matrix L is lower triangular and L * transpose(L) = A. If the A is
|
||||||
|
// not symmetric then an error is displayed. If the matrix is symmetric but
|
||||||
|
// not positive definite then undef is returned.
|
||||||
|
function cholesky(A) =
|
||||||
|
assert(is_matrix(A,square=true),"A must be a square matrix")
|
||||||
|
assert(is_matrix_symmetric(A),"Cholesky factorization requires a symmetric matrix")
|
||||||
|
echo(A=A,len=len(A))
|
||||||
|
_cholesky(A,ident(len(A)), len(A));
|
||||||
|
|
||||||
|
function _cholesky(A,L,n) = let(ffee=echo(insideA=A,L,n))
|
||||||
|
A[0][0]<0 ? undef : // Matrix not positive definite
|
||||||
|
len(A) == 1 ? submatrix_set(L,[[sqrt(A[0][0])]], n-1,n-1):
|
||||||
|
let(
|
||||||
|
i = n+1-len(A),ff=echo(i=i,lenA=len(A))
|
||||||
|
)
|
||||||
|
let(
|
||||||
|
sqrtAii = sqrt(A[0][0]),
|
||||||
|
Lnext = [for(j=[0:n-1])
|
||||||
|
[for(k=[0:n-1])
|
||||||
|
j<i-1 || k<i-1 ? (j==k ? 1 : 0)
|
||||||
|
: j==i-1 && k==i-1 ? sqrtAii
|
||||||
|
: j==i-1 ? 0
|
||||||
|
: k==i-1 ? A[j-(i-1)][0]/sqrtAii
|
||||||
|
: j==k ? 1 : 0]],
|
||||||
|
Anext = submatrix(A,[1:n-1], [1:n-1]) - outer_product(list_tail(A[0]), list_tail(A[0]))/A[0][0]
|
||||||
|
)
|
||||||
|
_cholesky(Anext,L*Lnext,n);
|
||||||
|
|
||||||
|
|
||||||
// Function: det2()
|
// Function: det2()
|
||||||
// Usage:
|
// Usage:
|
||||||
// d = det2(M);
|
// d = det2(M);
|
||||||
|
|
|
@ -360,9 +360,9 @@ test_rand_int();
|
||||||
|
|
||||||
|
|
||||||
module test_gaussian_rands() {
|
module test_gaussian_rands() {
|
||||||
nums1 = gaussian_rands(0,10,1000,seed=2132);
|
nums1 = gaussian_rands(1000,0,10,seed=2132);
|
||||||
nums2 = gaussian_rands(0,10,1000,seed=2130);
|
nums2 = gaussian_rands(1000,0,10,seed=2130);
|
||||||
nums3 = gaussian_rands(0,10,1000,seed=2132);
|
nums3 = gaussian_rands(1000,0,10,seed=2132);
|
||||||
assert_equal(len(nums1), 1000);
|
assert_equal(len(nums1), 1000);
|
||||||
assert_equal(len(nums2), 1000);
|
assert_equal(len(nums2), 1000);
|
||||||
assert_equal(len(nums3), 1000);
|
assert_equal(len(nums3), 1000);
|
||||||
|
|
Loading…
Reference in a new issue