Refactored various bezier routines to use fast bezier point generation.

This commit is contained in:
Revar Desmera 2020-05-13 01:09:11 -07:00
parent 4cacebadef
commit a5fb810738
6 changed files with 252 additions and 267 deletions

View file

@ -44,6 +44,32 @@ include <skin.scad>
// Description:
// Computes bezier points for bezier with control points specified by `curve` at parameter values specified by `u`, which can be a scalar or a list.
// This function uses an optimized method which is best when `u` is a long list and the bezier degree is 10 or less.
// The degree of the bezier curve given is `len(curve)-1`.
// Arguments:
// curve = The list of endpoints and control points for this bezier segment.
// u = The proportion of the way along the curve to find the point of. 0<=`u`<=1 If given as a list or range, returns a list of point, one for each u value.
// Example(2D): Quadratic (Degree 2) Bezier.
// bez = [[0,0], [30,30], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// translate(bezier_points(bez, 0.3)) color("red") sphere(1);
// Example(2D): Cubic (Degree 3) Bezier
// bez = [[0,0], [5,35], [60,-25], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// translate(bezier_points(bez, 0.4)) color("red") sphere(1);
// Example(2D): Degree 4 Bezier.
// bez = [[0,0], [5,15], [40,20], [60,-15], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// translate(bezier_points(bez, 0.8)) color("red") sphere(1);
// Example(2D): Giving a List of `u`
// bez = [[0,0], [5,35], [60,-25], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// pts = bezier_points(bez, [0, 0.2, 0.3, 0.7, 0.8, 1]);
// rainbow(pts) move($item) sphere(1.5, $fn=12);
// Example(2D): Giving a Range of `u`
// bez = [[0,0], [5,35], [60,-25], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// pts = bezier_points(bez, [0:0.2:1]);
// rainbow(pts) move($item) sphere(1.5, $fn=12);
// Ugly but speed optimized code for computing bezier curves using the matrix representation
// See https://pomax.github.io/bezierinfo/#matrix for explanation.
@ -55,7 +81,7 @@ include <skin.scad>
// lookup table or hard coded powers list the code is about twice as fast as the recursive method.
// Note that everything I tried to simplify or tidy this code made is slower, sometimes a lot slower.
function bezier_points(curve, u) =
is_num(u) ? bezier_points(pts,[u])[0] :
is_num(u) ? bezier_points(curve,[u])[0] :
let(
N = len(curve)-1,
M = _bezier_matrix(N)*curve
@ -73,12 +99,16 @@ function bezier_points(curve, u) =
N==10? [for(uval=u)[1, uval, uval*uval, uval*uval*uval, uval*uval*uval*uval, pow(uval,5),pow(uval,6), pow(uval,7), pow(uval,8), pow(uval,9), pow(uval,10)]*M] :
/* N>=11 */ [for(uval=u)[for (i=[0:1:N]) pow(uval,i)]*M];
// Not public.
function _signed_pascals_triangle(N,tri=[[-1]]) =
len(tri)==N+1 ? tri :
let(last=tri[len(tri)-1])
_signed_pascals_triangle(N,concat(tri,[[-1, for(i=[0:1:len(tri)-2]) (i%2==1?-1:1)*(abs(last[i])+abs(last[i+1])),len(last)%2==0? -1:1]]));
function _compute_bez_matrix(N) =
// Not public.
function _compute_bezier_matrix(N) =
let(tri = _signed_pascals_triangle(N))
[for(i=[0:N]) concat(tri[N][i]*tri[i], repeat(0,N-i))];
@ -87,6 +117,7 @@ function _compute_bez_matrix(N) =
// of bezier points. This method is much faster than the recursive de Casteljau method
// in OpenScad, but we have to precompute the matrices to reap the full benefit.
// Not public.
_bezier_matrix_table = [
[[1]],
[[ 1, 0],
@ -144,48 +175,15 @@ _bezier_matrix_table = [
];
// Not public.
function _bezier_matrix(N) =
N>10 ? _compute_bez_matrix(N)
: _bezier_matrix_table[N];
N>10 ? _compute_bezier_matrix(N) :
_bezier_matrix_table[N];
// Function: bez_point()
// Function: bezier_derivative()
// Usage:
// bez_point(curve, u)
// Description:
// Formula to calculate points on a bezier curve. The degree of
// the curve, N, is one less than the number of points in `curve`.
// Arguments:
// curve = The list of endpoints and control points for this bezier segment.
// u = The proportion of the way along the curve to find the point of. 0<=`u`<=1 If given as a list or range, returns a list of points for each u value.
// Example(2D): Quadratic (Degree 2) Bezier.
// bez = [[0,0], [30,30], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// translate(bez_point(bez, 0.3)) color("red") sphere(1);
// Example(2D): Cubic (Degree 3) Bezier
// bez = [[0,0], [5,35], [60,-25], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// translate(bez_point(bez, 0.4)) color("red") sphere(1);
// Example(2D): Degree 4 Bezier.
// bez = [[0,0], [5,15], [40,20], [60,-15], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// translate(bez_point(bez, 0.8)) color("red") sphere(1);
function bez_point(curve, u)=
is_num(u)? (
(len(curve) <= 1)? curve[0] :
bez_point(
[
for(i=[0:1:len(curve)-2])
curve[i]*(1-u) + curve[i+1]*u
], u
)
) : [for (uu = u) bez_point(curve, uu)];
// Function: bez_deriv()
// Usage:
// d = bez_deriv(curve, u, [order]);
// d = bezier_derivative(curve, u, [order]);
// Description:
// Finds the `order`th derivative of the bezier segment at the given position `u`.
// The degree of the bezier segment is one less than the number of points in `curve`.
@ -193,13 +191,13 @@ function bez_point(curve, u)=
// curve = The list of endpoints and control points for this bezier segment.
// u = The proportion of the way along the curve to find the derivative of. 0<=`u`<=1 If given as a list or range, returns a list of derivatives, one for each u value.
// order = The order of the derivative to return. Default: 1 (for the first derivative)
function bez_deriv(curve, u, order=1) =
function bezier_derivative(curve, u, order=1) =
assert(is_int(order) && order>=0)
order==0? bez_point(curve, u) : let(
order==0? bezier_points(curve, u) : let(
N = len(curve) - 1,
dpts = N * deltas(curve)
) order==1? bez_point(dpts, u) :
bez_deriv(dpts, u, order-1);
) order==1? bezier_points(dpts, u) :
bezier_derivative(dpts, u, order-1);
@ -213,7 +211,7 @@ function bez_deriv(curve, u, order=1) =
// u = The proportion of the way along the curve to find the tangent vector of. 0<=`u`<=1 If given as a list or range, returns a list of tangent vectors, one for each u value.
function bezier_tangent(curve, u) =
let(
res = bez_deriv(curve, u)
res = bezier_derivative(curve, u)
) is_vector(res)? unit(res) :
[for (v=res) unit(v)];
@ -233,8 +231,8 @@ function bezier_tangent(curve, u) =
function bezier_curvature(curve, u) =
is_num(u) ? bezier_curvature(curve,[u])[0] :
let(
d1 = bez_deriv(curve, u, 1),
d2 = bez_deriv(curve, u, 2)
d1 = bezier_derivative(curve, u, 1),
d2 = bezier_derivative(curve, u, 2)
) [
for(i=idx(d1))
sqrt(
@ -259,17 +257,17 @@ function bezier_curvature(curve, u) =
// n = The number of points to generate along the bezier curve.
// Example(2D): Quadratic (Degree 2) Bezier.
// bez = [[0,0], [30,30], [80,0]];
// move_copies(bezier_curve(bez, 16)) sphere(r=1);
// move_copies(bezier_curve(bez, 8)) sphere(r=1.5, $fn=12);
// trace_bezier(bez, N=len(bez)-1);
// Example(2D): Cubic (Degree 3) Bezier
// bez = [[0,0], [5,35], [60,-25], [80,0]];
// move_copies(bezier_curve(bez, 16)) sphere(r=1);
// move_copies(bezier_curve(bez, 8)) sphere(r=1.5, $fn=12);
// trace_bezier(bez, N=len(bez)-1);
// Example(2D): Degree 4 Bezier.
// bez = [[0,0], [5,15], [40,20], [60,-15], [80,0]];
// move_copies(bezier_curve(bez, 16)) sphere(r=1);
// move_copies(bezier_curve(bez, 8)) sphere(r=1.5, $fn=12);
// trace_bezier(bez, N=len(bez)-1);
function bezier_curve(curve,n) = [for(i=[0:1:n-1]) bez_point(curve, i/(n-1))];
function bezier_curve(curve,n) = bezier_points(curve, [0:1/n:(n-0.5)/n]);
// Function: bezier_segment_closest_point()
@ -289,18 +287,18 @@ function bezier_curve(curve,n) = [for(i=[0:1:n-1]) bez_point(curve, i/(n-1))];
// u = bezier_segment_closest_point(bez, pt);
// trace_bezier(bez, N=len(bez)-1);
// color("red") translate(pt) sphere(r=1);
// color("blue") translate(bez_point(bez,u)) sphere(r=1);
// color("blue") translate(bezier_points(bez,u)) sphere(r=1);
function bezier_segment_closest_point(curve, pt, max_err=0.01, u=0, end_u=1) =
let(
steps = len(curve)*3,
path = [for (i=[0:1:steps]) let(v=(end_u-u)*(i/steps)+u) [v, bez_point(curve, v)]],
bracketed = concat([path[0]], path, [path[len(path)-1]]),
uvals = [u, for (i=[0:1:steps]) (end_u-u)*(i/steps)+u, end_u],
path = bezier_points(curve,uvals),
minima_ranges = [
for (pts = triplet(bracketed)) let(
d1=norm(pts.x.y-pt),
d2=norm(pts.y.y-pt),
d3=norm(pts.z.y-pt)
) if(d2<=d1 && d2<=d3) [pts.x.x,pts.z.x]
for (i = [1:1:len(uvals)-2]) let(
d1 = norm(path[i-1]-pt),
d2 = norm(path[i ]-pt),
d3 = norm(path[i+1]-pt)
) if (d2<=d1 && d2<=d3) [uvals[i-1],uvals[i+1]]
]
) len(minima_ranges)>1? (
let(
@ -308,16 +306,15 @@ function bezier_segment_closest_point(curve, pt, max_err=0.01, u=0, end_u=1) =
for (minima = minima_ranges)
bezier_segment_closest_point(curve, pt, max_err=max_err, u=minima.x, end_u=minima.y)
],
dists = [for (v=min_us) norm(bez_point(curve,v)-pt)],
dists = [for (v=min_us) norm(bezier_points(curve,v)-pt)],
min_i = min_index(dists)
) min_us[min_i]
) : let(
minima = minima_ranges[0],
p1 = bez_point(curve, minima.x),
p2 = bez_point(curve, minima.y),
err = norm(p2-p1)
pp = bezier_points(curve, minima),
err = norm(pp[1]-pp[0])
) err<max_err? mean(minima) :
bezier_segment_closest_point(curve, pt, max_err=max_err, u=minima.x, end_u=minima.y);
bezier_segment_closest_point(curve, pt, max_err=max_err, u=minima[0], end_u=minima[1]);
@ -338,11 +335,8 @@ function bezier_segment_closest_point(curve, pt, max_err=0.01, u=0, end_u=1) =
function bezier_segment_length(curve, start_u=0, end_u=1, max_deflect=0.01) =
let(
segs = len(curve) * 2,
path = [
for (i=[0:1:segs])
let(u=lerp(start_u, end_u, i/segs))
bez_point(curve,u)
],
uvals = [for (i=[0:1:segs]) lerp(start_u, end_u, i/segs)],
path = bezier_points(curve,uvals),
defl = max([
for (i=idx(path,end=-3)) let(
mp = (path[i] + path[i+2]) / 2
@ -394,7 +388,7 @@ function fillet3pts(p0, p1, p2, r, maxerr=0.1, w=0.5, dw=0.25) = let(
cp0 = lerp(tp0, p1, w),
cp1 = lerp(tp1, p1, w),
cpr = norm(cp-tp0),
bp = bez_point([tp0, cp0, cp1, tp1], 0.5),
bp = bezier_points([tp0, cp0, cp1, tp1], 0.5),
tdist = norm(cp-bp)
) (abs(tdist-cpr) <= maxerr)? [tp0, tp0, cp0, cp1, tp1, tp1] :
(tdist<cpr)? fillet3pts(p0, p1, p2, r, maxerr=maxerr, w=w+dw, dw=dw/2) :
@ -408,13 +402,15 @@ function fillet3pts(p0, p1, p2, r, maxerr=0.1, w=0.5, dw=0.25) = let(
// Function: bezier_path_point()
// Usage:
// bezier_path_point(path, seg, u, [N])
// Description: Returns the coordinates of bezier path segment `seg` at position `u`.
// Description:
// Returns the coordinates of bezier path segment `seg` at position `u`.
// Arguments:
// path = A bezier path to approximate.
// seg = Segment number along the path. Each segment is N points long.
// u = The proportion of the way along the segment to find the point of. 0<=`u`<=1
// u = The proportion of the way along the segment to find the point of. 0<=`u`<=1 If given as a list or range, returns a list of points, one for each value in `u`.
// N = The degree of the bezier curves. Cubic beziers have N=3. Default: 3
function bezier_path_point(path, seg, u, N=3) = bez_point(select(path,seg*N,(seg+1)*N), u);
function bezier_path_point(path, seg, u, N=3) =
bezier_points(select(path,seg*N,(seg+1)*N), u);
@ -450,7 +446,7 @@ function bezier_path_closest_point(path, pt, N=3, max_err=0.01, seg=0, min_seg=u
let(
curve = select(path,seg*N,(seg+1)*N),
u = bezier_segment_closest_point(curve, pt, max_err=0.05),
dist = norm(bez_point(curve, u)-pt),
dist = norm(bezier_points(curve, u)-pt),
mseg = (min_dist==undef || dist<min_dist)? seg : min_seg,
mdist = (min_dist==undef || dist<min_dist)? dist : min_dist,
mu = (min_dist==undef || dist<min_dist)? u : min_u
@ -874,9 +870,9 @@ module trace_bezier(bez, N=3, size=1) {
// Section: Patch Functions
// Function: bezier_patch_point()
// Function: bezier_patch_points()
// Usage:
// bezier_patch_point(patch, u, v)
// bezier_patch_points(patch, u, v)
// Description:
// Given a square 2-dimensional array of (N+1) by (N+1) points size,
// that represents a Bezier Patch of degree N, returns a point on that
@ -885,8 +881,8 @@ module trace_bezier(bez, N=3, size=1) {
// its own degree.
// Arguments:
// patch = The 2D array of endpoints and control points for this bezier patch.
// u = The proportion of the way along the first dimension of the patch to find the point of. 0<=`u`<=1
// v = The proportion of the way along the second dimension of the patch to find the point of. 0<=`v`<=1
// u = The proportion of the way along the horizontal inner list of the patch to find the point of. 0<=`u`<=1. If given as a list or range of values, returns a list of point lists.
// v = The proportion of the way along the vertical outer list of the patch to find the point of. 0<=`v`<=1. If given as a list or range of values, returns a list of point lists.
// Example(3D):
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
@ -895,9 +891,26 @@ module trace_bezier(bez, N=3, size=1) {
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]]
// ];
// trace_bezier_patches(patches=[patch], size=1, showcps=true);
// pt = bezier_patch_point(patch, 0.6, 0.75);
// pt = bezier_patch_points(patch, 0.6, 0.75);
// translate(pt) color("magenta") sphere(d=3, $fn=12);
function bezier_patch_point(patch, u, v) = bez_point([for (bez = patch) bez_point(bez, u)], v);
// Example(3D): Getting Multiple Points at Once
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]]
// ];
// trace_bezier_patches(patches=[patch], size=1, showcps=true);
// pts = bezier_patch_points(patch, [0:0.2:1], [0:0.2:1]);
// for (row=pts) move_copies(row) color("magenta") sphere(d=3, $fn=12);
function bezier_patch_points(patch, u, v) =
is_num(u) && is_num(v)? bezier_points([for (bez = patch) bezier_points(bez, u)], v) :
assert(is_num(u) || !is_undef(u[0]))
assert(is_num(v) || !is_undef(v[0]))
let(
vbezes = [for (i = idx(patch[0])) bezier_points(subindex(patch,i), is_num(u)? [u] : u)]
)
[for (i = idx(vbezes[0])) bezier_points(subindex(vbezes,i), is_num(v)? [v] : v)];
// Function: bezier_triangle_point()
@ -967,10 +980,12 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx".
// Example(3D):
// patch = [
// [[-50, 50, 0], [-16, 50, -20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, -20], [ 16, 16, 20], [50, 16, 20]],
// // u=0,v=0 u=1,v=0
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, -20], [50,-50, 0]],
// [[-50,-16, 20], [-16,-16, 20], [ 16,-16, -20], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, -20], [50,-50, 0]]
// [[-50, 16, 20], [-16, 16, -20], [ 16, 16, 20], [50, 16, 20]],
// [[-50, 50, 0], [-16, 50, -20], [ 16, 50, 20], [50, 50, 0]],
// // u=0,v=1 u=1,v=1
// ];
// vnf = bezier_patch(patch, splinesteps=16);
// vnf_polyhedron(vnf);
@ -984,10 +999,12 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
// vnf_polyhedron(vnf);
// Example(3DFlatSpin): Chaining Patches
// patch = [
// // u=0,v=0 u=1,v=0
// [[0, 0,0], [33, 0, 0], [67, 0, 0], [100, 0,0]],
// [[0, 33,0], [33, 33, 33], [67, 33, 33], [100, 33,0]],
// [[0, 67,0], [33, 67, 33], [67, 67, 33], [100, 67,0]],
// [[0,100,0], [33,100, 0], [67,100, 0], [100,100,0]],
// // u=0,v=1 u=1,v=1
// ];
// vnf1 = bezier_patch(translate(p=patch,[-50,-50,50]));
// vnf2 = bezier_patch(vnf=vnf1, rot(a=[90,0,0],p=translate(p=patch,[-50,-50,50])));
@ -996,23 +1013,27 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
// vnf5 = bezier_patch(vnf=vnf4, rot(a=[0,90,0],p=translate(p=patch,[-50,-50,50])));
// vnf6 = bezier_patch(vnf=vnf5, rot(a=[0,-90,0],p=translate(p=patch,[-50,-50,50])));
// vnf_polyhedron(vnf6);
// Example(3D): Chaining Patches with Asymmetric Splinesteps
// Example(3D): Connecting Patches with Asymmetric Splinesteps
// steps = 8;
// edge_patch = [
// // u=0, v=0 u=1,v=0
// [[-60, 0,-40], [0, 0,-40], [60, 0,-40]],
// [[-60, 0, 0], [0, 0, 0], [60, 0, 0]],
// [[-60,40, 0], [0,40, 0], [60,40, 0]],
// // u=0, v=1 u=1,v=1
// ];
// corner_patch = [
// [[40, 0,-40], [ 0, 0,-40], [ 0, 40,-40]],
// [[40, 0, 0], [ 0, 0, 0], [ 0, 40, 0]],
// [[40, 40, 0], [40, 40, 0], [40, 40, 0]]
// // u=0, v=0 u=1,v=0
// [[ 0, 40,-40], [ 0, 0,-40], [40, 0,-40]],
// [[ 0, 40, 0], [ 0, 0, 0], [40, 0, 0]],
// [[40, 40, 0], [40, 40, 0], [40, 40, 0]],
// // u=0, v=1 u=1,v=1
// ];
// face_patch = bezier_patch_flat([120,120],orient=LEFT);
// edges = [
// for (axrot=[[0,0,0],[0,90,0],[0,0,90]], xang=[-90:90:180])
// bezier_patch(
// splinesteps=[1,steps],
// splinesteps=[steps,1],
// rot(a=axrot,
// p=rot(a=[xang,0,0],
// p=translate(v=[0,-100,100],p=edge_patch)
@ -1021,7 +1042,7 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
// )
// ];
// corners = [
// for (zang=[0,180], xang=[-90:90:180])
// for (xang=[0,180], zang=[-90:90:180])
// bezier_patch(
// splinesteps=steps,
// rot(a=[xang,0,zang],
@ -1035,7 +1056,7 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
// splinesteps=1,
// rot(a=axrot,
// p=rot(a=[0,0,zang],
// p=translate(v=[-100,0,0], p=face_patch)
// p=move([-100,0,0], p=face_patch)
// )
// )
// )
@ -1046,19 +1067,16 @@ function bezier_patch(patch, splinesteps=16, vnf=EMPTY_VNF, style="default") =
is_tripatch(patch)? _bezier_triangle(patch, splinesteps=splinesteps, vnf=vnf) :
let(
splinesteps = is_list(splinesteps) ? splinesteps : [splinesteps,splinesteps],
bpatch = [
for(step=[0:1:splinesteps.x]) [
for(patchline=patch)
bez_point(patchline, step/splinesteps.x)
]
uvals = [
for(step=[0:1:splinesteps.x])
step/splinesteps.x
],
pts = [
for(step=[0:1:splinesteps.y]) [
for(bezparm=bpatch)
bez_point(bezparm, step/splinesteps.y)
]
vvals = [
for(step=[0:1:splinesteps.y])
1-step/splinesteps.y
],
vnf = vnf_vertex_array(pts, style=style, vnf=vnf, reverse=true)
pts = bezier_patch_points(patch, uvals, vvals),
vnf = vnf_vertex_array(pts, style=style, vnf=vnf, reverse=false)
) vnf;
@ -1153,10 +1171,10 @@ function patch_reverse(patch) = [for (row=patch) reverse(row)];
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
// ];
// patch2 = [
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
// [[ 0,40,0], [ 0, 0,-50], [100, 0,-50], [100, 40,0]],
// [[ 0,60,0], [ 0,100,-50], [100,100,-50], [100, 60,0]],
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
// [[ 0,60,0], [ 0,100,-50], [100,100,-50], [100, 60,0]],
// [[ 0,40,0], [ 0, 0,-50], [100, 0,-50], [100, 40,0]],
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
// ];
// vnf = bezier_surface(patches=[patch1, patch2], splinesteps=16);
// polyhedron(points=vnf[0], faces=vnf[1]);
@ -1191,10 +1209,10 @@ function bezier_surface(patches=[], splinesteps=16, vnf=EMPTY_VNF, style="defaul
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
// ];
// patch2 = [
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
// [[ 0,40,0], [ 0, 0,-50], [100, 0,-50], [100, 40,0]],
// [[ 0,60,0], [ 0,100,-50], [100,100,-50], [100, 60,0]],
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
// [[ 0,60,0], [ 0,100,-50], [100,100,-50], [100, 60,0]],
// [[ 0,40,0], [ 0, 0,-50], [100, 0,-50], [100, 40,0]],
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
// ];
// bezier_polyhedron([patch1, patch2], splinesteps=8);
module bezier_polyhedron(patches=[], splinesteps=16, vnf=EMPTY_VNF, style="default", convexity=10)
@ -1229,10 +1247,10 @@ module bezier_polyhedron(patches=[], splinesteps=16, vnf=EMPTY_VNF, style="defau
// [[15,85,0], [33,100, 0], [ 67,100, 0], [ 85, 85,0]],
// ];
// patch2 = [
// [[15,15,0], [33, 0, 0], [ 67, 0, 0], [ 85, 15,0]],
// [[ 0,33,0], [33, 33,-50], [ 67, 33,-50], [100, 33,0]],
// [[ 0,67,0], [33, 67,-50], [ 67, 67,-50], [100, 67,0]],
// [[15,85,0], [33,100, 0], [ 67,100, 0], [ 85, 85,0]],
// [[ 0,67,0], [33, 67,-50], [ 67, 67,-50], [100, 67,0]],
// [[ 0,33,0], [33, 33,-50], [ 67, 33,-50], [100, 33,0]],
// [[15,15,0], [33, 0, 0], [ 67, 0, 0], [ 85, 15,0]],
// ];
// trace_bezier_patches(patches=[patch1, patch2], splinesteps=8, showcps=true);
module trace_bezier_patches(patches=[], size, splinesteps=16, showcps=true, showdots=false, showpatch=true, convexity=10, style="default")

View file

@ -1,5 +1,4 @@
include <BOSL2/std.scad>
include <BOSL2/paths.scad>
include <BOSL2/beziers.scad>
@ -28,24 +27,15 @@ function CR_corner(size, spin=0, orient=UP, trans=[0,0,0]) =
function CR_edge(size, spin=0, orient=UP, trans=[0,0,0]) =
let (
// This patch might not yet correct for continuous rounding,
// This patch might not be correct for continuous rounding,
// but it's a first approximation proof of concept.
a = 0.68,
c = 0.24,
m = -1/2,
n = -3/10,
o = -1/10,
p = 1/10,
q = 3/10,
r = 1/2,
patch = [
[[1,0,m], [1,0,n], [1,0,o], [1,0,p], [1,0,q], [1,0,r]],
[[a,0,m], [a,0,n], [a,0,o], [a,0,p], [a,0,q], [a,0,r]],
[[c,0,m], [c,0,n], [c,0,o], [c,0,p], [c,0,q], [c,0,r]],
[[0,c,m], [0,c,n], [0,c,o], [0,c,p], [0,c,q], [0,c,r]],
[[0,a,m], [0,a,n], [0,a,o], [0,a,p], [0,a,q], [0,a,r]],
[[0,1,m], [0,1,n], [0,1,o], [0,1,p], [0,1,q], [0,1,r]],
]
vvals = [1.00, 0.68, 0.24],
xyvals = [
for (x=vvals) [x,0],
for (y=reverse(vvals)) [0,y]
],
zvals = [-0.5:0.2:0.5],
patch = [for (xy=xyvals) [for (z=zvals) [each xy, z]]]
)
translate(trans,
p=rot(a=spin, from=UP, to=orient,
@ -58,44 +48,23 @@ module CR_cube(size=[100,100,100], r=10, splinesteps=8, debug=false)
{
s = size-2*[r,r,r];
h = size/2;
corner_pat = CR_corner([r,r,r], trans=[-size.x/2, -size.y/2, -size.z/2]);
edge_pat = CR_edge([r, r, s.z], trans=[-h.x, -h.y, 0]);
face_pat = bezier_patch_flat([s.x, s.z], N=1, orient=FRONT, trans=[0, -h.y, 0]);
corners = bezier_surface([
CR_corner([r,r,r], spin=0, orient=UP, trans=[-size.x/2, -size.y/2, -size.z/2]),
CR_corner([r,r,r], spin=90, orient=UP, trans=[ size.x/2, -size.y/2, -size.z/2]),
CR_corner([r,r,r], spin=180, orient=UP, trans=[ size.x/2, size.y/2, -size.z/2]),
CR_corner([r,r,r], spin=270, orient=UP, trans=[-size.x/2, size.y/2, -size.z/2]),
CR_corner([r,r,r], spin=0, orient=DOWN, trans=[ size.x/2, -size.y/2, size.z/2]),
CR_corner([r,r,r], spin=90, orient=DOWN, trans=[-size.x/2, -size.y/2, size.z/2]),
CR_corner([r,r,r], spin=180, orient=DOWN, trans=[-size.x/2, size.y/2, size.z/2]),
CR_corner([r,r,r], spin=270, orient=DOWN, trans=[ size.x/2, size.y/2, size.z/2]),
for (yr=[0,180], zr=[0:90:270]) let(
m = yrot(yr) * zrot(zr)
) [for (row=corner_pat) apply(m, row)]
], splinesteps=splinesteps);
edges = bezier_surface([
CR_edge([r, r, s.x], spin=0, orient=RIGHT, trans=[ 0, -h.y, h.z]),
CR_edge([r, r, s.x], spin=90, orient=RIGHT, trans=[ 0, -h.y, -h.z]),
CR_edge([r, r, s.x], spin=180, orient=RIGHT, trans=[ 0, h.y, -h.z]),
CR_edge([r, r, s.x], spin=270, orient=RIGHT, trans=[ 0, h.y, h.z]),
CR_edge([r, r, s.y], spin=0, orient=BACK, trans=[-h.x, 0, h.z]),
CR_edge([r, r, s.y], spin=90, orient=BACK, trans=[ h.x, 0, h.z]),
CR_edge([r, r, s.y], spin=180, orient=BACK, trans=[ h.x, 0, -h.z]),
CR_edge([r, r, s.y], spin=270, orient=BACK, trans=[-h.x, 0, -h.z]),
CR_edge([r, r, s.z], spin=0, orient=UP, trans=[-h.x, -h.y, 0]),
CR_edge([r, r, s.z], spin=90, orient=UP, trans=[ h.x, -h.y, 0]),
CR_edge([r, r, s.z], spin=180, orient=UP, trans=[ h.x, h.y, 0]),
CR_edge([r, r, s.z], spin=270, orient=UP, trans=[-h.x, h.y, 0])
], splinesteps=[1,splinesteps]);
for (axr=[[0,0,0],[90,0,0],[0,90,0]],zr=[0:90:270]) let(
m = rot(axr) * zrot(zr)
) [for (row=edge_pat) apply(m, row)]
], splinesteps=[splinesteps,1]);
faces = bezier_surface([
// Yes, these are degree 1 bezier patches. That means just the four corner points.
// Since these are flat, it doesn't matter what degree they are, and this will reduce calculation overhead.
bezier_patch_flat([s.y, s.z], N=1, orient=RIGHT, trans=[ h.x, 0, 0]),
bezier_patch_flat([s.y, s.z], N=1, orient=LEFT, trans=[-h.x, 0, 0]),
bezier_patch_flat([s.x, s.z], N=1, orient=BACK, trans=[ 0, h.y, 0]),
bezier_patch_flat([s.x, s.z], N=1, orient=FRONT, trans=[ 0, -h.y, 0]),
bezier_patch_flat([s.x, s.y], N=1, orient=UP, trans=[ 0, 0, h.z]),
bezier_patch_flat([s.x, s.y], N=1, orient=DOWN, trans=[ 0, 0, -h.z])
for (axr=[0,90,180,270,[-90,0,0],[90,0,0]]) let(
m = rot(axr)
) [for (row=face_pat) apply(m, row)]
], splinesteps=1);
if (debug) {

View file

@ -1,5 +1,4 @@
include <BOSL2/std.scad>
include <BOSL2/beziers.scad>
//$fa=2;
//$fs=2;

View file

@ -1,5 +1,4 @@
include <BOSL2/std.scad>
include <BOSL2/beziers.scad>
//$fa=2;
//$fs=2;

View file

@ -8,10 +8,10 @@ p = s * d;
q = s * 0.55 * d;
u = s * 2.5 * UP;
patch1 = [
[p[1], p[1]+q[0], p[0]+q[1], p[0] ],
[p[1]+q[2], p[1]+q[1]+u, p[0]+q[0]+u, p[0]+q[3]],
[p[2]+q[1], p[2]+q[2]+u, p[3]+q[3]+u, p[3]+q[0]],
[p[2], p[2]+q[3], p[3]+q[2], p[3] ],
[p[2]+q[1], p[2]+q[2]+u, p[3]+q[3]+u, p[3]+q[0]],
[p[1]+q[2], p[1]+q[1]+u, p[0]+q[0]+u, p[0]+q[3]],
[p[1], p[1]+q[0], p[0]+q[1], p[0] ],
];
patch2 = patch_reverse(zflip(p=patch1));
trace_bezier_patches([patch1, patch2], splinesteps=16, style="quincunx");

View file

@ -8,7 +8,7 @@
//////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,299];
BOSL_VERSION = [2,0,300];
// Section: BOSL Library Version Functions