Merge pull request #993 from revarbat/revarbat_dev

Fix for #985: cyl(r1,r2,h,chamfer)
This commit is contained in:
Revar Desmera 2022-11-17 01:23:33 -08:00 committed by GitHub
commit a61d35136a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 82 additions and 261 deletions

View file

@ -2771,8 +2771,7 @@ module show_anchors(s=10, std=true, custom=true) {
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Example: // Example:
// anchor_arrow(s=20); // anchor_arrow(s=20);
module anchor_arrow(s=10, color=[0.333,0.333,1], flag=true, $tag="anchor-arrow", anchor=BOT, spin=0, orient=UP) { module anchor_arrow(s=10, color=[0.333,0.333,1], flag=true, $tag="anchor-arrow", $fn=12, anchor=BOT, spin=0, orient=UP) {
$fn=12;
attachable(anchor,spin,orient, r=s/6, l=s) { attachable(anchor,spin,orient, r=s/6, l=s) {
down(s/2) down(s/2)
recolor("gray") spheroid(d=s/6) { recolor("gray") spheroid(d=s/6) {

View file

@ -1186,13 +1186,15 @@ function cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
// d2 = Diameter of the positive (X+, Y+, Z+) end of cylinder. // d2 = Diameter of the positive (X+, Y+, Z+) end of cylinder.
// circum = If true, cylinder should circumscribe the circle of the given size. Otherwise inscribes. Default: `false` // circum = If true, cylinder should circumscribe the circle of the given size. Otherwise inscribes. Default: `false`
// shift = [X,Y] amount to shift the center of the top end with respect to the center of the bottom end. // shift = [X,Y] amount to shift the center of the top end with respect to the center of the bottom end.
// chamfer = The size of the chamfers on the ends of the cylinder. Default: none. // chamfer = The size of the chamfers on the ends of the cylinder. (Also see: `from_end=`) Default: none.
// chamfer1 = The size of the chamfer on the bottom end of the cylinder. Default: none. // chamfer1 = The size of the chamfer on the bottom end of the cylinder. (Also see: `from_end1=`) Default: none.
// chamfer2 = The size of the chamfer on the top end of the cylinder. Default: none. // chamfer2 = The size of the chamfer on the top end of the cylinder. (Also see: `from_end2=`) Default: none.
// chamfang = The angle in degrees of the chamfers on the ends of the cylinder. // chamfang = The angle in degrees of the chamfers away from the ends of the cylinder. Default: Chamfer angle is halfway between the endcap and cone face.
// chamfang1 = The angle in degrees of the chamfer on the bottom end of the cylinder. // chamfang1 = The angle in degrees of the bottom chamfer away from the bottom end of the cylinder. Default: Chamfer angle is halfway between the endcap and cone face.
// chamfang2 = The angle in degrees of the chamfer on the top end of the cylinder. // chamfang2 = The angle in degrees of the top chamfer away from the top end of the cylinder. Default: Chamfer angle is halfway between the endcap and cone face.
// from_end = If true, chamfer is measured from the end of the cylinder, instead of inset from the edge. Default: `false`. // from_end = If true, chamfer is measured along the conic face from the ends of the cylinder, instead of inset from the edge. Default: `false`.
// from_end1 = If true, chamfer on the bottom end of the cylinder is measured along the conic face from the end of the cylinder, instead of inset from the edge. Default: `false`.
// from_end2 = If true, chamfer on the top end of the cylinder is measured along the conic face from the end of the cylinder, instead of inset from the edge. Default: `false`.
// rounding = The radius of the rounding on the ends of the cylinder. Default: none. // rounding = The radius of the rounding on the ends of the cylinder. Default: none.
// rounding1 = The radius of the rounding on the bottom end of the cylinder. // rounding1 = The radius of the rounding on the bottom end of the cylinder.
// rounding2 = The radius of the rounding on the top end of the cylinder. // rounding2 = The radius of the rounding on the top end of the cylinder.
@ -1245,8 +1247,8 @@ function cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
// //
// Example: Putting it all together // Example: Putting it all together
// cyl( // cyl(
// l=40, d1=25, d2=15, // l=20, d1=25, d2=15,
// chamfer1=10, chamfang1=30, // chamfer1=5, chamfang1=60,
// from_end=true, rounding2=5 // from_end=true, rounding2=5
// ); // );
// //
@ -1339,8 +1341,8 @@ function cyl(
chamfer, chamfer1, chamfer2, chamfer, chamfer1, chamfer2,
chamfang, chamfang1, chamfang2, chamfang, chamfang1, chamfang2,
rounding, rounding1, rounding2, rounding, rounding1, rounding2,
circum=false, realign=false, circum=false, realign=false, shift=[0,0],
from_end=false, shift=[0,0], from_end, from_end1, from_end2,
texture, tex_size=[5,5], tex_counts, texture, tex_size=[5,5], tex_counts,
tex_inset=false, tex_rot=false, tex_inset=false, tex_rot=false,
tex_scale=1, tex_samples, tex_scale=1, tex_samples,
@ -1363,78 +1365,74 @@ function cyl(
assert(is_finite(r2), "r2 or d2 must be a finite number.") assert(is_finite(r2), "r2 or d2 must be a finite number.")
assert(is_vector(shift,2), "shift must be a 2D vector.") assert(is_vector(shift,2), "shift must be a 2D vector.")
let( let(
vnf = texture != undef? _textured_cylinder( vnf = !any_defined([chamfer, chamfer1, chamfer2, rounding, rounding1, rounding2, texture])
l=l, r1=r1, r2=r2, ? cylinder(h=l, r1=r1, r2=r2, center=true, $fn=sides)
texture=texture, tex_size=tex_size, : let(
counts=tex_counts, tex_scale=tex_scale, vang = atan2(r1-r2,l),
inset=tex_inset, rot=tex_rot, _chamf1 = first_defined([chamfer1, chamfer, 0]),
style=tex_style, taper=tex_taper, _chamf2 = first_defined([chamfer2, chamfer, 0]),
chamfer=chamfer, _fromend1 = first_defined([from_end1, from_end, false]),
chamfer1=chamfer1, _fromend2 = first_defined([from_end2, from_end, false]),
chamfer2=chamfer2, chang1 = first_defined([chamfang1, chamfang, 45+vang/2]),
rounding=rounding, chang2 = first_defined([chamfang2, chamfang, 45-vang/2]),
rounding1=rounding1,
rounding2=rounding2,
samples=tex_samples
) :
!any_defined([chamfer, chamfer1, chamfer2, rounding, rounding1, rounding2])?
cylinder(h=l, r1=r1, r2=r2, center=true, $fn=sides) :
let(
vang = atan2(l, r1-r2)/2,
chang = default(chamfang, 45),
chang1 = 90-first_defined([chamfang1, chamfang, vang]),
chang2 = 90-first_defined([chamfang2, chamfang, 90-vang]),
checks1 =
assert(is_finite(chang) && chang>0 && chang<90, "chamfang must be a number between 0 and 90 (exclusive) if given.")
assert(is_finite(chang1) && chang1>0 && chang1<90, "chamfang1 must be a number between 0 and 90 (exclusive) if given.")
assert(is_finite(chang2) && chang2>0 && chang2<90, "chamfang2 must be a number between 0 and 90 (exclusive) if given.")
undef,
chamf = default(chamfer, 0) * (from_end? 1 : tan(chang1)),
chamf1 = first_defined([chamfer1, chamfer, 0]) * (from_end? 1 : tan(chang1)),
chamf2 = first_defined([chamfer2, chamfer, 0]) * (from_end? 1 : tan(chang2)),
round = default(rounding, 0),
round1 = first_defined([rounding1, rounding, 0]), round1 = first_defined([rounding1, rounding, 0]),
round2 = first_defined([rounding2, rounding, 0]), round2 = first_defined([rounding2, rounding, 0]),
dy1 = abs(first_defined([chamf1, round1, 0])), checks1 =
dy2 = abs(first_defined([chamf2, round2, 0])), assert(is_finite(_chamf1), "chamfer1 must be a finite number if given.")
assert(is_finite(_chamf2), "chamfer2 must be a finite number if given.")
assert(is_finite(chang1) && chang1>0 && chang1<90, "chamfang1 must be a number between 0 and 90 (exclusive) if given.")
assert(is_finite(chang2) && chang2>0 && chang2<90, "chamfang2 must be a number between 0 and 90 (exclusive) if given.")
assert(chang1<=90+vang, "chamfang1 is larger than the cone face angle")
assert(180-chang2>=90+vang, "chamfang2 is larger than the cone face angle")
undef,
chamf1r = !_chamf1? 0 : !_fromend1? _chamf1 :
law_of_sines(a=_chamf1, A=chang1, B=180-chang1-(90-vang)),
chamf2r = !_chamf2? 0 : !_fromend2? _chamf2 :
law_of_sines(a=_chamf2, A=chang2, B=180-chang2-(90+vang)),
chamf1l = !_chamf1? 0 : _fromend1? _chamf1 :
law_of_sines(a=_chamf1, A=180-chang1-(90-vang), B=chang1),
chamf2l = !_chamf2? 0 : _fromend2? _chamf2 :
law_of_sines(a=_chamf2, A=180-chang2-(90+vang), B=chang2),
facelen = adj_ang_to_hyp(l, abs(vang)),
cp1 = [r1,-l/2],
cp2 = [r2,+l/2],
dy1 = abs(first_defined([chamf1l, round1, 0])),
dy2 = abs(first_defined([chamf2l, round2, 0])),
checks2 = checks2 =
assert(is_finite(chamf), "chamfer must be a finite number if given.")
assert(is_finite(chamf1), "chamfer1 must be a finite number if given.")
assert(is_finite(chamf2), "chamfer2 must be a finite number if given.")
assert(is_finite(round), "rounding must be a finite number if given.")
assert(is_finite(round1), "rounding1 must be a finite number if given.") assert(is_finite(round1), "rounding1 must be a finite number if given.")
assert(is_finite(round2), "rounding2 must be a finite number if given.") assert(is_finite(round2), "rounding2 must be a finite number if given.")
assert(chamf <= r1, "chamfer is larger than the r1 radius of the cylinder.") assert(chamf1r <= r1, "chamfer1 is larger than the r1 radius of the cylinder.")
assert(chamf <= r2, "chamfer is larger than the r2 radius of the cylinder.") assert(chamf2r <= r2, "chamfer2 is larger than the r2 radius of the cylinder.")
assert(chamf1 <= r1, "chamfer1 is larger than the r1 radius of the cylinder.")
assert(chamf2 <= r2, "chamfer2 is larger than the r2 radius of the cylinder.")
assert(round <= r1, "rounding is larger than the r1 radius of the cylinder.")
assert(round <= r2, "rounding is larger than the r2 radius of the cylinder.")
assert(round1 <= r1, "rounding1 is larger than the r1 radius of the cylinder.") assert(round1 <= r1, "rounding1 is larger than the r1 radius of the cylinder.")
assert(round2 <= r2, "rounding2 is larger than the r1 radius of the cylinder.") assert(round2 <= r2, "rounding2 is larger than the r1 radius of the cylinder.")
assert(dy1+dy2 <= l, "Sum of fillets and chamfer sizes must be less than the length of the cylinder.") assert(dy1+dy2 <= facelen, "Sum of fillets and chamfer sizes must be less than the length of the cylinder/cone face.")
undef, undef,
path = [ path = [
[0,-l/2], if (texture==undef) [0,-l/2],
if (is_finite(chamf1) && !approx(chamf1,0)) if (is_finite(chamf1r) && !approx(chamf1r,0))
let( each [
p1 = [r1-chamf1/tan(chang1),-l/2], [r1, -l/2] + polar_to_xy(chamf1r,180),
p2 = lerp([r1,-l/2],[r2,l/2],abs(chamf1)/l) [r1, -l/2] + polar_to_xy(chamf1l,90+vang),
) each [p1,p2] ]
else if (is_finite(round1) && !approx(round1,0)) else if (is_finite(round1) && !approx(round1,0))
each arc(r=abs(round1), corner=[[(round1>0?0:1e6),-l/2],[r1,-l/2],[r2,l/2]]) each arc(r=abs(round1), corner=[[(round1>0?0:1e6),-l/2],[r1,-l/2],[r2,l/2]])
else [r1,-l/2], else [r1,-l/2],
if (is_finite(chamf2) && !approx(chamf2,0)) if (is_finite(chamf2r) && !approx(chamf2r,0))
let( each [
p1 = lerp([r2,l/2],[r1,-l/2],abs(chamf2)/l), [r2, l/2] + polar_to_xy(chamf2l,270+vang),
p2 = [r2-chamf2/tan(chang2),l/2] [r2, l/2] + polar_to_xy(chamf2r,180),
) each [p1,p2] ]
else if (is_finite(round2) && !approx(round2,0)) else if (is_finite(round2) && !approx(round2,0))
each arc(r=abs(round2), corner=[[r1,-l/2],[r2,l/2],[(round2>0?0:1e6),l/2]]) each arc(r=abs(round2), corner=[[r1,-l/2],[r2,l/2],[(round2>0?0:1e6),l/2]])
else [r2,l/2], else [r2,l/2],
[0,l/2] if (texture==undef) [0,l/2],
] ]
) rotate_sweep(path), ) rotate_sweep(path,
texture=texture, tex_counts=tex_counts, tex_size=tex_size,
tex_inset=tex_inset, tex_rot=tex_rot,
tex_scale=tex_scale, tex_samples=tex_samples,
tex_taper=tex_taper, style=tex_style, closed=false
),
skmat = down(l/2) * skmat = down(l/2) *
skew(sxz=shift.x/l, syz=shift.y/l) * skew(sxz=shift.x/l, syz=shift.y/l) *
up(l/2) * up(l/2) *
@ -1451,8 +1449,8 @@ module cyl(
chamfer, chamfer1, chamfer2, chamfer, chamfer1, chamfer2,
chamfang, chamfang1, chamfang2, chamfang, chamfang1, chamfang2,
rounding, rounding1, rounding2, rounding, rounding1, rounding2,
circum=false, realign=false, circum=false, realign=false, shift=[0,0],
from_end=false, shift=[0,0], from_end, from_end1, from_end2,
texture, tex_size=[5,5], tex_counts, texture, tex_size=[5,5], tex_counts,
tex_inset=false, tex_rot=false, tex_inset=false, tex_rot=false,
tex_scale=1, tex_samples, tex_scale=1, tex_samples,
@ -1472,69 +1470,22 @@ module cyl(
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l, shift=shift) { attachable(anchor,spin,orient, r1=r1, r2=r2, l=l, shift=shift) {
multmatrix(skmat) multmatrix(skmat)
zrot(realign? 180/sides : 0) { zrot(realign? 180/sides : 0) {
if (texture != undef) { if (!any_defined([chamfer, chamfer1, chamfer2, rounding, rounding1, rounding2, texture])) {
_textured_cylinder(
l=l, r1=r1, r2=r2,
texture=texture, tex_size=tex_size,
counts=tex_counts, tex_scale=tex_scale,
inset=tex_inset, rot=tex_rot,
style=tex_style, taper=tex_taper,
chamfer=chamfer,
chamfer1=chamfer1,
chamfer2=chamfer2,
rounding=rounding,
rounding1=rounding1,
rounding2=rounding2,
convexity=10, samples=tex_samples
);
} else if (!any_defined([chamfer, chamfer1, chamfer2, rounding, rounding1, rounding2])) {
cylinder(h=l, r1=r1, r2=r2, center=true, $fn=sides); cylinder(h=l, r1=r1, r2=r2, center=true, $fn=sides);
} else { } else {
vang = atan2(l, r1-r2)/2; vnf = cyl(
chang1 = 90-first_defined([chamfang1, chamfang, vang,]); l=l, r1=r1, r2=r2, center=true, $fn=sides,
chang2 = 90-first_defined([chamfang2, chamfang, 90-vang]); chamfer=chamfer, chamfer1=chamfer1, chamfer2=chamfer2,
chamf = default(chamfer, 0) * (from_end? 1 : tan(chang1)); chamfang=chamfang, chamfang1=chamfang1, chamfang2=chamfang2,
chamf1 = first_defined([chamfer1, chamfer, 0]) * (from_end? 1 : tan(chang1)); rounding=rounding, rounding1=rounding1, rounding2=rounding2,
chamf2 = first_defined([chamfer2, chamfer, 0]) * (from_end? 1 : tan(chang2)); from_end=from_end, from_end1=from_end1, from_end2=from_end2,
round = default(rounding, 0); texture=texture, tex_size=tex_size,
round1 = first_defined([rounding1, rounding, 0]); tex_counts=tex_counts, tex_scale=tex_scale,
round2 = first_defined([rounding2, rounding, 0]); tex_inset=tex_inset, tex_rot=tex_rot,
dy1 = abs(first_defined([chamf1, round1, 0])); tex_style=tex_style, tex_taper=tex_taper,
dy2 = abs(first_defined([chamf2, round2, 0])); tex_samples=tex_samples
checks = );
assert(chamf <= r1, "chamfer is larger than the r1 radius of the cylinder.") vnf_polyhedron(vnf, convexity=texture!=undef? 2 : 10);
assert(chamf <= r2, "chamfer is larger than the r2 radius of the cylinder.")
assert(chamf1 <= r1, "chamfer1 is larger than the r1 radius of the cylinder.")
assert(chamf2 <= r2, "chamfer2 is larger than the r2 radius of the cylinder.")
assert(round <= r1, "rounding is larger than the r1 radius of the cylinder.")
assert(round <= r2, "rounding is larger than the r2 radius of the cylinder.")
assert(round1 <= r1, "rounding1 is larger than the r1 radius of the cylinder.")
assert(round2 <= r2, "rounding2 is larger than the r1 radius of the cylinder.")
assert(dy1+dy2 <= l, "Sum of fillets and chamfer sizes must be less than the length of the cylinder.")
undef;
path = [
[0,-l/2],
if (is_finite(chamf1) && !approx(chamf1,0))
let(
p1 = [r1-chamf1/tan(chang1),-l/2],
p2 = lerp([r1,-l/2],[r2,l/2],abs(chamf1)/l)
) each [p1,p2]
else if (is_finite(round1) && !approx(round1,0))
each arc(r=abs(round1), corner=[[(round1>0?0:1e6),-l/2],[r1,-l/2],[r2,l/2]])
else [r1,-l/2],
if (is_finite(chamf2) && !approx(chamf2,0))
let(
p1 = lerp([r2,l/2],[r1,-l/2],abs(chamf2)/l),
p2 = [r2-chamf2/tan(chang2),l/2]
) each [p1,p2]
else if (is_finite(round2) && !approx(round2,0))
each arc(r=abs(round2), corner=[[r1,-l/2],[r2,l/2],[(round2>0?0:1e6),l/2]])
else [r2,l/2],
[0,l/2]
];
vnf = rotate_sweep(path);
vnf_polyhedron(vnf, convexity=2);
} }
} }
children(); children();

129
skin.scad
View file

@ -3625,134 +3625,5 @@ module _textured_revolution(
} }
/// Function&Module: _textured_cylinder()
/// Usage: As Function
/// vnf = _textured_cylinder(h|l=, r|d=, texture, tex_size|counts=, [tex_scale=], [inset=], [rot=], ...);
/// vnf = _textured_cylinder(h|l=, r1=|d1=, r2=|d2=, texture=, tex_size=|counts=, [tex_scale=], [inset=], [rot=], ...);
/// Usage: As Module
/// _textured_cylinder(h, r|d=, texture, tex_size|counts=, [tex_scale=], [inset=], [rot=], ...) [ATTACHMENTS];
/// _textured_cylinder(h, r1=|d1=, r2=|d2=, texture=, tex_size=|counts=, [tex_scale=], [inset=], [rot=], ...) [ATTACHMENTS];
/// Topics: Sweep, Extrusion, Textures, Knurling
/// Description:
/// Creates a cylinder or cone with optional chamfers or roundings, covered in a textured surface.
/// The texture can be given in one of three ways:
/// - As a texture name string. (See {{texture()}} for supported named textures.)
/// - As a 2D array of evenly spread height values. (AKA a heightfield.)
/// - As a VNF texture tile. A VNF tile exactly defines a surface from `[0,0]` to `[1,1]`, with the Z coordinates
/// being the height of the texture point from the surface. VNF tiles MUST be able to tile in both X and Y
/// directions with no gaps, with the front and back edges aligned exactly, and the left and right edges as well.
/// One script to convert a grayscale image to a texture heightfield array in a .scad file can be found at:
/// https://raw.githubusercontent.com/revarbat/BOSL2/master/scripts/img2scad.py
/// Arguments:
/// h | l = The height of the cylinder.
/// r = The radius of the cylinder.
/// texture = A texture name string, or a rectangular array of scalar height values (0.0 to 1.0), or a VNF tile that defines the texture to apply to the cylinder wall surfaces. See {{texture()}} for what named textures are supported.
/// tex_size = An optional 2D target size for the textures. Actual texture sizes will be scaled somewhat to evenly fit the available surface. Default: `[5,5]`
/// ---
/// r1 = The radius of the bottom of the cylinder.
/// r2 = The radius of the top of the cylinder.
/// d = The diameter of the cylinder.
/// d1 = The diameter of the bottom of the cylinder.
/// d2 = The diameter of the top of the cylinder.
/// tex_scale = Scaling multiplier for the texture depth.
/// inset = If numeric, lowers the texture into the surface by that amount, before the tex_scale multiplier is applied. If `true`, insets by exactly `1`. Default: `false`
/// rot = If true, rotates the texture 90º.
/// caps = (function only) If true, create endcaps for the extruded shape. Default: `true`
/// shift = [X,Y] amount to translate the top, relative to the bottom. Default: [0,0]
/// style = The triangulation style used. See {{vnf_vertex_array()}} for valid styles. Default: `"min_edge"`
/// taper = If given, tapers the texture height to zero over the given percentage of the top and bottom of the cylinder face. Default: `undef` (no taper)
/// counts = If given instead of tex_size, gives the tile repetition counts for textures over the surface length and height.
/// chamfer = If given, chamfers the top and bottom of the cylinder by the given size. If given a negative size, creates a chamfer that juts *outward* from the cylinder.
/// chamfer1 = If given, chamfers the bottom of the cylinder by the given size. If given a negative size, creates a chamfer that juts *outward* from the cylinder.
/// chamfer2 = If given, chamfers the top of the cylinder by the given size. If given a negative size, creates a chamfer that juts *outward* from the cylinder.
/// rounding = If given, rounds the top and bottom of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder.
/// rounding1 = If given, rounds the bottom of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder.
/// rounding2 = If given, rounds the top of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder.
/// samples = Minimum number of "bend points" to have in VNF texture tiles. Default: 8
/// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
/// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
/// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
/// See Also: heightfield(), cylindrical_heightfield(), texture()
function _textured_cylinder(
h, r, texture, tex_size=[1,1], counts,
tex_scale=1, inset=false, rot=false,
caps=true, style="min_edge", taper,
shift=[0,0], l, r1, r2, d, d1, d2,
chamfer, chamfer1, chamfer2,
rounding, rounding1, rounding2,
samples
) =
let(
h = first_defined([h, l, 1]),
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1),
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1),
chamf1 = first_defined([chamfer1, chamfer, 0]),
chamf2 = first_defined([chamfer2, chamfer, 0]),
round1 = first_defined([rounding1, rounding, 0]),
round2 = first_defined([rounding2, rounding, 0]),
needed_h = chamf1 + chamf2 + round1 + round2,
needed_r1 = chamf1 + round1,
needed_r2 = chamf2 + round2,
checks =
assert(needed_h <= h, "Cylinder not tall enough for specified roundings and chamfers.")
assert(needed_r1 <= r1, "Cylinder bottom radius too small for given rounding or chamfer.")
assert(needed_r2 <= r2, "Cylinder top radius too small for given rounding or chamfer.")
,
path = [
if (is_finite(chamf1) && !approx(chamf1,0))
each arc(n=2, r=abs(chamf1), corner=[[(chamf1>0?0:1e6),-h/2],[r1,-h/2],[r2,h/2]])
else if (is_finite(round1) && !approx(round1,0))
each arc(r=abs(round1), corner=[[(round1>0?0:1e6),-h/2],[r1,-h/2],[r2,h/2]])
else [r1,-h/2],
if (is_finite(chamf2) && !approx(chamf2,0))
each arc(n=2, r=abs(chamf2), corner=[[r1,-h/2],[r2,h/2],[(chamf2>0?0:1e6),h/2]])
else if (is_finite(round2) && !approx(round2,0))
each arc(r=abs(round2), corner=[[r1,-h/2],[r2,h/2],[(round2>0?0:1e6),h/2]])
else [r2,h/2],
],
vnf = _textured_revolution(
reverse(path), texture, closed=false,
tex_size=tex_size, counts=counts,
tex_scale=tex_scale, inset=inset, rot=rot,
style=style, shift=shift, taper=taper,
samples=samples
)
) vnf;
module _textured_cylinder(
h, r, texture, tex_size=[1,1],
counts, tex_scale=1, inset=false, rot=false,
style="min_edge", shift=[0,0], taper,
l, r1, r2, d, d1, d2,
chamfer, chamfer1, chamfer2,
rounding, rounding1, rounding2,
convexity=10, samples,
anchor=CENTER, spin=0, orient=UP
) {
h = first_defined([h, l, 1]);
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
chamf1 = first_defined([chamfer1, chamfer]);
chamf2 = first_defined([chamfer2, chamfer]);
round1 = first_defined([rounding1, rounding]);
round2 = first_defined([rounding2, rounding]);
vnf = _textured_cylinder(
texture=texture, h=h, r1=r1, r2=r2,
tex_scale=tex_scale, inset=inset, rot=rot,
counts=counts, tex_size=tex_size,
caps=true, style=style, taper=taper,
shift=shift, samples=samples,
chamfer1=chamf1, chamfer2=chamf2,
rounding1=round1, rounding2=round2
);
attachable(anchor,spin,orient, r1=r1, r2=r2, h=h, shift=shift) {
vnf_polyhedron(vnf, convexity=convexity);
children();
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap