mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
commit
a68c3bc03e
3 changed files with 186 additions and 41 deletions
|
@ -161,10 +161,10 @@ function left_half(p,x=0) = half_of(p, LEFT, [x,0,0]);
|
|||
// Function&Module: right_half()
|
||||
//
|
||||
// Usage: as module
|
||||
// right_half([s], [x]) ...
|
||||
// right_half(planar=true, [s], [x]) ...
|
||||
// right_half([s=], [x=]) ...
|
||||
// right_half(planar=true, [s=], [x=]) ...
|
||||
// Usage: as function
|
||||
// result = right_half(p, [x]);
|
||||
// result = right_half(p=, [x=]);
|
||||
//
|
||||
// Description:
|
||||
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it.
|
||||
|
|
217
shapes3d.scad
217
shapes3d.scad
|
@ -918,8 +918,8 @@ function rect_tube(
|
|||
// vnf = wedge(size, [center], ...);
|
||||
//
|
||||
// Description:
|
||||
// When called as a modulem creates a 3D triangular wedge with the hypotenuse in the X+Z+ quadrant.
|
||||
// When called as a function creates a VNF for a 3D triangular wedge with the hypotenuse in the X+Z+ quadrant.
|
||||
// When called as a module, creates a 3D triangular wedge with the hypotenuse in the X+Z+ quadrant.
|
||||
// When called as a function, creates a VNF for a 3D triangular wedge with the hypotenuse in the X+Z+ quadrant.
|
||||
//
|
||||
// Arguments:
|
||||
// size = [width, thickness, height]
|
||||
|
@ -1474,15 +1474,19 @@ module tube(
|
|||
|
||||
|
||||
|
||||
// Module: pie_slice()
|
||||
// Function&Module: pie_slice()
|
||||
//
|
||||
// Description:
|
||||
// Creates a pie slice shape.
|
||||
//
|
||||
// Usage: Typical
|
||||
// Usage: As Module
|
||||
// pie_slice(l|h, r, ang, [center]);
|
||||
// pie_slice(l|h, d=, ang=, ...);
|
||||
// pie_slice(l|h, r1=|d1=, r2=|d2=, ang=, ...);
|
||||
// Usage: As Function
|
||||
// vnf = pie_slice(l|h, r, ang, [center]);
|
||||
// vnf = pie_slice(l|h, d=, ang=, ...);
|
||||
// vnf = pie_slice(l|h, r1=|d1=, r2=|d2=, ang=, ...);
|
||||
// Usage: Attaching Children
|
||||
// pie_slice(l|h, r, ang, ...) [attachments];
|
||||
//
|
||||
|
@ -1505,6 +1509,11 @@ module tube(
|
|||
// pie_slice(ang=45, l=20, r=30);
|
||||
// Example: Conical Pie Slice
|
||||
// pie_slice(ang=60, l=20, d1=50, d2=70);
|
||||
// Example: Big Slice
|
||||
// pie_slice(ang=300, l=20, d1=50, d2=70);
|
||||
// Example: Generating a VNF
|
||||
// vnf = pie_slice(ang=150, l=20, r1=30, r2=50);
|
||||
// vnf_polyhedron(vnf);
|
||||
module pie_slice(
|
||||
h, r, ang=30, center,
|
||||
r1, r2, d, d1, d2, l,
|
||||
|
@ -1529,6 +1538,34 @@ module pie_slice(
|
|||
}
|
||||
|
||||
|
||||
function pie_slice(
|
||||
h, r, ang=30, center,
|
||||
r1, r2, d, d1, d2, l,
|
||||
anchor, spin=0, orient=UP
|
||||
) = let(
|
||||
anchor = get_anchor(anchor, center, BOT, BOT),
|
||||
l = first_defined([l, h, 1]),
|
||||
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=10),
|
||||
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=10),
|
||||
maxd = max(r1,r2)+0.1,
|
||||
sides = ceil(segs(max(r1,r2))*ang/360),
|
||||
step = ang/sides,
|
||||
vnf = vnf_vertex_array(
|
||||
points=[
|
||||
for (u = [0,1]) let(
|
||||
h = lerp(-l/2,l/2,u),
|
||||
r = lerp(r1,r2,u)
|
||||
) [
|
||||
for (theta = [0:step:ang+EPSILON])
|
||||
cylindrical_to_xyz(r,theta,h),
|
||||
[0,0,h]
|
||||
]
|
||||
],
|
||||
col_wrap=true, caps=true, reverse=true
|
||||
)
|
||||
) reorient(anchor,spin,orient, r1=r1, r2=r2, l=l, p=vnf);
|
||||
|
||||
|
||||
|
||||
// Section: Other Round Objects
|
||||
|
||||
|
@ -1809,9 +1846,9 @@ function spheroid(r, style="aligned", d, circum=false, anchor=CENTER, spin=0, or
|
|||
|
||||
|
||||
|
||||
// Module: torus()
|
||||
// Function&Module: torus()
|
||||
//
|
||||
// Usage: Typical
|
||||
// Usage: As Module
|
||||
// torus(r_maj|d_maj, r_min|d_min, [center], ...);
|
||||
// torus(or|od, ir|id, ...);
|
||||
// torus(r_maj|d_maj, or|od, ...);
|
||||
|
@ -1820,6 +1857,13 @@ function spheroid(r, style="aligned", d, circum=false, anchor=CENTER, spin=0, or
|
|||
// torus(r_min|d_min, ir|id, ...);
|
||||
// Usage: Attaching Children
|
||||
// torus(or|od, ir|id, ...) [attachments];
|
||||
// Usage: As Function
|
||||
// vnf = torus(r_maj|d_maj, r_min|d_min, [center], ...);
|
||||
// vnf = torus(or|od, ir|id, ...);
|
||||
// vnf = torus(r_maj|d_maj, or|od, ...);
|
||||
// vnf = torus(r_maj|d_maj, ir|id, ...);
|
||||
// vnf = torus(r_min|d_min, or|od, ...);
|
||||
// vnf = torus(r_min|d_min, ir|id, ...);
|
||||
//
|
||||
// Description:
|
||||
// Creates a torus shape.
|
||||
|
@ -1875,6 +1919,7 @@ function spheroid(r, style="aligned", d, circum=false, anchor=CENTER, spin=0, or
|
|||
// torus(d_maj=45, od=60);
|
||||
// torus(d_min=15, id=30);
|
||||
// torus(d_min=15, od=60);
|
||||
// vnf_polyhedron(torus(d_min=15, od=60), convexity=4);
|
||||
// Example: Standard Connectors
|
||||
// torus(od=60, id=30) show_anchors();
|
||||
module torus(
|
||||
|
@ -1887,26 +1932,62 @@ module torus(
|
|||
_ir = get_radius(r=ir, d=id, dflt=undef);
|
||||
_r_maj = get_radius(r=r_maj, d=d_maj, dflt=undef);
|
||||
_r_min = get_radius(r=r_min, d=d_min, dflt=undef);
|
||||
majrad = is_finite(_r_maj)? _r_maj :
|
||||
maj_rad = is_finite(_r_maj)? _r_maj :
|
||||
is_finite(_ir) && is_finite(_or)? (_or + _ir)/2 :
|
||||
is_finite(_ir) && is_finite(_r_min)? (_ir + _r_min) :
|
||||
is_finite(_or) && is_finite(_r_min)? (_or - _r_min) :
|
||||
assert(false, "Bad Parameters");
|
||||
minrad = is_finite(_r_min)? _r_min :
|
||||
is_finite(_ir)? (majrad - _ir) :
|
||||
is_finite(_or)? (_or - majrad) :
|
||||
min_rad = is_finite(_r_min)? _r_min :
|
||||
is_finite(_ir)? (maj_rad - _ir) :
|
||||
is_finite(_or)? (_or - maj_rad) :
|
||||
assert(false, "Bad Parameters");
|
||||
anchor = get_anchor(anchor, center, BOT, CENTER);
|
||||
attachable(anchor,spin,orient, r=(majrad+minrad), l=minrad*2) {
|
||||
attachable(anchor,spin,orient, r=(maj_rad+min_rad), l=min_rad*2) {
|
||||
rotate_extrude(convexity=4) {
|
||||
right(majrad) circle(r=minrad);
|
||||
right_half(s=min_rad*2, planar=true)
|
||||
right(maj_rad)
|
||||
circle(r=min_rad);
|
||||
}
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Module: teardrop()
|
||||
function torus(
|
||||
r_maj, r_min, center,
|
||||
d_maj, d_min,
|
||||
or, od, ir, id,
|
||||
anchor, spin=0, orient=UP
|
||||
) = let(
|
||||
_or = get_radius(r=or, d=od, dflt=undef),
|
||||
_ir = get_radius(r=ir, d=id, dflt=undef),
|
||||
_r_maj = get_radius(r=r_maj, d=d_maj, dflt=undef),
|
||||
_r_min = get_radius(r=r_min, d=d_min, dflt=undef),
|
||||
maj_rad = is_finite(_r_maj)? _r_maj :
|
||||
is_finite(_ir) && is_finite(_or)? (_or + _ir)/2 :
|
||||
is_finite(_ir) && is_finite(_r_min)? (_ir + _r_min) :
|
||||
is_finite(_or) && is_finite(_r_min)? (_or - _r_min) :
|
||||
assert(false, "Bad Parameters"),
|
||||
min_rad = is_finite(_r_min)? _r_min :
|
||||
is_finite(_ir)? (maj_rad - _ir) :
|
||||
is_finite(_or)? (_or - maj_rad) :
|
||||
assert(false, "Bad Parameters"),
|
||||
anchor = get_anchor(anchor, center, BOT, CENTER),
|
||||
maj_sides = segs(maj_rad+min_rad),
|
||||
maj_step = 360 / maj_sides,
|
||||
min_sides = segs(min_rad),
|
||||
min_step = 360 / min_sides,
|
||||
xyprofile = min_rad <= maj_rad? right(maj_rad, p=circle(r=min_rad)) :
|
||||
right_half(p=right(maj_rad, p=circle(r=min_rad)))[0],
|
||||
profile = xrot(90, p=path3d(xyprofile)),
|
||||
vnf = vnf_vertex_array(
|
||||
points=[for (a=[0:maj_step:360-EPSILON]) zrot(a, p=profile)],
|
||||
caps=false, col_wrap=true, row_wrap=true, reverse=true
|
||||
)
|
||||
) reorient(anchor,spin,orient, r=(maj_rad+min_rad), l=min_rad*2, p=vnf);
|
||||
|
||||
|
||||
// Function&Module: teardrop()
|
||||
//
|
||||
// Description:
|
||||
// Makes a teardrop shape in the XZ plane. Useful for 3D printable holes.
|
||||
|
@ -1919,6 +2000,10 @@ module torus(
|
|||
// teardrop(h|l, d1=, d2=, [ang=], [cap_h1=], [cap_h2=], ...);
|
||||
// Usage: Attaching Children
|
||||
// teardrop(h|l, r, ...) [attachments];
|
||||
// Usage: As Function
|
||||
// vnf = teardrop(h|l=, r|d=, [ang=], [cap_h=], ...);
|
||||
// vnf = teardrop(h|l=, r1=|d1=, r2=|d2=, [ang=], [cap_h=], ...);
|
||||
// vnf = teardrop(h|l=, r1=|d1=, r2=|d2=, [ang=], [cap_h1=], [cap_h2=], ...);
|
||||
//
|
||||
// Arguments:
|
||||
// h / l = Thickness of teardrop. Default: 1
|
||||
|
@ -1950,6 +2035,9 @@ module torus(
|
|||
// teardrop(r=30, h=10, ang=30, cap_h=20);
|
||||
// Example: Psuedo-Conical
|
||||
// teardrop(r1=20, r2=30, h=40, cap_h1=25, cap_h2=35);
|
||||
// Example: Getting a VNF
|
||||
// vnf = teardrop(r1=25, r2=30, l=20, cap_h1=25, cap_h2=35);
|
||||
// vnf_polyhedron(vnf);
|
||||
// Example: Standard Conical Connectors
|
||||
// teardrop(d1=20, d2=30, h=20, cap_h1=11, cap_h2=16)
|
||||
// show_anchors(custom=false);
|
||||
|
@ -1961,33 +2049,38 @@ module teardrop(h, r, ang=45, cap_h, r1, r2, d, d1, d2, cap_h1, cap_h2, l, ancho
|
|||
r1 = get_radius(r=r, r1=r1, d=d, d1=d1, dflt=1);
|
||||
r2 = get_radius(r=r, r1=r2, d=d, d1=d2, dflt=1);
|
||||
l = first_defined([l, h, 1]);
|
||||
tip_y1 = adj_ang_to_hyp(r1, 90-ang);
|
||||
tip_y2 = adj_ang_to_hyp(r2, 90-ang);
|
||||
cap_h1 = min(first_defined([cap_h1, cap_h, tip_y1]), tip_y1);
|
||||
cap_h2 = min(first_defined([cap_h2, cap_h, tip_y2]), tip_y2);
|
||||
capvec = unit([0, cap_h1-cap_h2, l]);
|
||||
cap_h1 = first_defined([cap_h1, cap_h]);
|
||||
cap_h2 = first_defined([cap_h2, cap_h]);
|
||||
sides = segs(max(r1,r2));
|
||||
profile1 = teardrop2d(r=r1, ang=ang, cap_h=cap_h1, $fn=sides);
|
||||
profile2 = teardrop2d(r=r2, ang=ang, cap_h=cap_h2, $fn=sides);
|
||||
tip_y1 = max(column(profile1,1));
|
||||
tip_y2 = max(column(profile2,1));
|
||||
_cap_h1 = min(default(cap_h1, tip_y1), tip_y1);
|
||||
_cap_h2 = min(default(cap_h2, tip_y2), tip_y2);
|
||||
capvec = unit([0, _cap_h1-_cap_h2, l]);
|
||||
anchors = [
|
||||
named_anchor("cap", [0,0,(cap_h1+cap_h2)/2], capvec),
|
||||
named_anchor("cap_fwd", [0,-l/2,cap_h1], unit((capvec+FWD)/2)),
|
||||
named_anchor("cap_back", [0,+l/2,cap_h2], unit((capvec+BACK)/2), 180),
|
||||
named_anchor("cap", [0,0,(_cap_h1+_cap_h2)/2], capvec),
|
||||
named_anchor("cap_fwd", [0,-l/2,_cap_h1], unit((capvec+FWD)/2)),
|
||||
named_anchor("cap_back", [0,+l/2,_cap_h2], unit((capvec+BACK)/2), 180),
|
||||
];
|
||||
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l, axis=BACK, anchors=anchors) {
|
||||
rot(from=UP,to=FWD) {
|
||||
if (l > 0) {
|
||||
if (r1 == r2) {
|
||||
linear_extrude(height=l, center=true, slices=2) {
|
||||
teardrop2d(r=r1, ang=ang, cap_h=cap_h);
|
||||
polygon(profile1);
|
||||
}
|
||||
} else {
|
||||
hull() {
|
||||
up(l/2-0.001) {
|
||||
linear_extrude(height=0.001, center=false) {
|
||||
teardrop2d(r=r1, ang=ang, cap_h=cap_h1);
|
||||
polygon(profile1);
|
||||
}
|
||||
}
|
||||
down(l/2) {
|
||||
linear_extrude(height=0.001, center=false) {
|
||||
teardrop2d(r=r2, ang=ang, cap_h=cap_h2);
|
||||
polygon(profile2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1999,18 +2092,48 @@ module teardrop(h, r, ang=45, cap_h, r1, r2, d, d1, d2, cap_h1, cap_h2, l, ancho
|
|||
}
|
||||
|
||||
|
||||
// Module: onion()
|
||||
function teardrop(h, r, ang=45, cap_h, r1, r2, d, d1, d2, cap_h1, cap_h2, l, anchor=CENTER, spin=0, orient=UP) =
|
||||
let(
|
||||
r1 = get_radius(r=r, r1=r1, d=d, d1=d1, dflt=1),
|
||||
r2 = get_radius(r=r, r1=r2, d=d, d1=d2, dflt=1),
|
||||
l = first_defined([l, h, 1]),
|
||||
cap_h1 = first_defined([cap_h1, cap_h]),
|
||||
cap_h2 = first_defined([cap_h2, cap_h]),
|
||||
sides = segs(max(r1,r2)),
|
||||
profile1 = teardrop2d(r=r1, ang=ang, cap_h=cap_h1, $fn=sides),
|
||||
profile2 = teardrop2d(r=r2, ang=ang, cap_h=cap_h2, $fn=sides),
|
||||
tip_y1 = max(column(profile1,1)),
|
||||
tip_y2 = max(column(profile2,1)),
|
||||
feef=echo(tip_y1=tip_y1, tip_y2=tip_y2),
|
||||
_cap_h1 = min(default(cap_h1, tip_y1), tip_y1),
|
||||
_cap_h2 = min(default(cap_h2, tip_y2), tip_y2),
|
||||
capvec = unit([0, _cap_h1-_cap_h2, l]),
|
||||
anchors = [
|
||||
named_anchor("cap", [0,0,(_cap_h1+_cap_h2)/2], capvec),
|
||||
named_anchor("cap_fwd", [0,-l/2,_cap_h1], unit((capvec+FWD)/2)),
|
||||
named_anchor("cap_back", [0,+l/2,_cap_h2], unit((capvec+BACK)/2), 180),
|
||||
],
|
||||
vnf = vnf_vertex_array(
|
||||
points = [
|
||||
fwd(l/2, p=xrot(90, p=path3d(profile1))),
|
||||
back(l/2, p=xrot(90, p=path3d(profile2))),
|
||||
],
|
||||
caps=true, col_wrap=true, reverse=true
|
||||
)
|
||||
) reorient(anchor,spin,orient, r1=r1, r2=r2, l=l, axis=BACK, anchors=anchors, p=vnf);
|
||||
|
||||
|
||||
// Function&Module: onion()
|
||||
//
|
||||
// Description:
|
||||
// Creates a sphere with a conical hat, to make a 3D teardrop.
|
||||
//
|
||||
// Usage:
|
||||
// onion(r|d, [ang], [cap_h]);
|
||||
// Usage: Typical
|
||||
// onion(r, [ang], [cap_h], ...);
|
||||
// onion(d=, [ang=], [cap_h=], ...);
|
||||
// Usage: As Module
|
||||
// onion(r|d=, [ang=], [cap_h=], ...);
|
||||
// Usage: Attaching Children
|
||||
// onion(r, ...) [attachments];
|
||||
// Usage: As Function
|
||||
// vnf = onion(r|d=, [ang=], [cap_h=], ...);
|
||||
//
|
||||
// Arguments:
|
||||
// r = radius of spherical portion of the bottom. Default: 1
|
||||
|
@ -2028,7 +2151,7 @@ module teardrop(h, r, ang=45, cap_h, r1, r2, d, d1, d2, cap_h1, cap_h2, l, ancho
|
|||
// onion(r=30, ang=30, cap_h=40);
|
||||
// Example: Close Crop
|
||||
// onion(r=30, ang=30, cap_h=20);
|
||||
// Example: Onions are useful for making the tops of large cylingdrical voids.
|
||||
// Example: Onions are useful for making the tops of large cylindrical voids.
|
||||
// difference() {
|
||||
// cuboid([100,50,100], anchor=FWD+BOT);
|
||||
// down(0.1)
|
||||
|
@ -2041,16 +2164,18 @@ module teardrop(h, r, ang=45, cap_h, r1, r2, d, d1, d2, cap_h1, cap_h2, l, ancho
|
|||
module onion(r, ang=45, cap_h, d, anchor=CENTER, spin=0, orient=UP)
|
||||
{
|
||||
r = get_radius(r=r, d=d, dflt=1);
|
||||
tip_y = adj_ang_to_hyp(r, 90-ang);
|
||||
cap_h = min(default(cap_h,tip_y), tip_y);
|
||||
xyprofile = teardrop2d(r=r, ang=ang, cap_h=cap_h);
|
||||
tip_h = max(column(xyprofile,1));
|
||||
_cap_h = min(default(cap_h,tip_h), tip_h);
|
||||
anchors = [
|
||||
["cap", [0,0,cap_h], UP, 0]
|
||||
["cap", [0,0,_cap_h], UP, 0],
|
||||
["tip", [0,0,tip_h], UP, 0]
|
||||
];
|
||||
attachable(anchor,spin,orient, r=r, anchors=anchors) {
|
||||
rotate_extrude(convexity=2) {
|
||||
difference() {
|
||||
teardrop2d(r=r, ang=ang, cap_h=cap_h);
|
||||
left(r) square(size=[2*r,2*max(cap_h,r)+1], center=true);
|
||||
polygon(xyprofile);
|
||||
square([2*r,2*max(_cap_h,r)+1], anchor=RIGHT);
|
||||
}
|
||||
}
|
||||
children();
|
||||
|
@ -2058,6 +2183,26 @@ module onion(r, ang=45, cap_h, d, anchor=CENTER, spin=0, orient=UP)
|
|||
}
|
||||
|
||||
|
||||
function onion(r, ang=45, cap_h, d, anchor=CENTER, spin=0, orient=UP) =
|
||||
let(
|
||||
r = get_radius(r=r, d=d, dflt=1),
|
||||
xyprofile = right_half(p=teardrop2d(r=r, ang=ang, cap_h=cap_h))[0],
|
||||
profile = xrot(90, p=path3d(xyprofile)),
|
||||
tip_h = max(column(xyprofile,1)),
|
||||
_cap_h = min(default(cap_h,tip_h), tip_h),
|
||||
anchors = [
|
||||
["cap", [0,0,_cap_h], UP, 0],
|
||||
["tip", [0,0,tip_h], UP, 0]
|
||||
],
|
||||
sides = segs(r),
|
||||
step = 360 / sides,
|
||||
vnf = vnf_vertex_array(
|
||||
points=[for (a = [0:step:360-EPSILON]) zrot(a, p=profile)],
|
||||
caps=false, col_wrap=true, row_wrap=true, reverse=true
|
||||
)
|
||||
) reorient(anchor,spin,orient, r=r, anchors=anchors, p=vnf);
|
||||
|
||||
|
||||
// Section: Text
|
||||
|
||||
// Module: text3d()
|
||||
|
|
|
@ -130,7 +130,7 @@ vnf_polyhedron(vnf);
|
|||
Another way to find problems with your VNF, is to use the `vnf_validate()` module, which will ECHO problems to the console, and will attempt to display where the issue is. This can find a lot more types of non-manifold errors, but can be slow:
|
||||
|
||||
|
||||
```openscad-3D
|
||||
```openscad-3D,ThrownTogether
|
||||
vnf = [
|
||||
[
|
||||
[-1,-1,-1], [1,-1,-1], [1,1,-1], [-1,1,-1],
|
||||
|
@ -156,7 +156,7 @@ ECHO: "ERROR REVERSAL (violet): Faces Reverse Across Edge at [[1, 1, 1], [-1, -1
|
|||
|
||||
The `vnf_validate()` module will stop after displaying the first found problem type, so once you fix those issues, you will want to run it again to display any other remaining issues. For example, the reversed face in the above example is hiding a non-manifold hole in the front face:
|
||||
|
||||
```openscad-3D
|
||||
```openscad-3D,ThrownTogether
|
||||
vnf = [
|
||||
[
|
||||
[-1,-1,-1], [1,-1,-1], [1,1,-1], [-1,1,-1],
|
||||
|
|
Loading…
Reference in a new issue