This commit is contained in:
Alex Matulich 2024-12-06 09:07:51 -08:00 committed by GitHub
commit a6cf490628
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -1988,6 +1988,84 @@ function reuleaux_polygon(n=3, r, d, anchor=CENTER, spin=0) =
// Function&Module: squircle()
// Synopsis: Creates a shape between a circle and a square, centered on the origin.
// SynTags: Geom, Path
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// See Also: circle(), square(), supershape()
// Usage: As Module
// squircle(squareness, size) [ATTACHMENTS];
// Usage: As Function
// path = squircle(squareness, size);
// Description:
// A squircle is a shape intermediate between a square/rectangle and a circle/ellipse. A squircle is a special case of supershape (shown in `supershape()` example 3), but this implementation uses a different method that requires just two parameters, and the vertex distribution is optimized for smoothness.
// Squircles are sometimes used to make dinner plates (more area for the same radius as a circle), keyboard buttons, and smartphone icons. Old CRT television screens also resembled squircles.
// When called as a module, creates a 2D squircle with the desired squareness. Uses "intersect" type anchoring.
// When called as a function, returns a 2D path for a squircle.
// Arguments:
// squareness = Value between 0 and 1. Controls the shape of the squircle. When `squareness=0` the shape is a circle, and when `squareness=1` the shape is a square. Default: 0.7
// size = Bounding box of the squircle, same as the `size` parameter in `square()`, can be a single number or an `[xsize,ysize]` vector. Default: [10,10]
// $fn = Number of points. Special variables `$fs` and `$fa` are ignored. If set, `$fn` must be 12 or greater, and is rounded to the nearest multiple of 4. Points are generated non-uniformly around the squircle so they are more dense sharper curves. Default if not set: 40
// Examples(2D):
// squircle(squareness=0.4, size=50);
// squircle(0.8, [80,60], $fn=64);
// Examples(2D): Ten increments of squareness parameter
// for(sq=[0:0.1:1])
// stroke(squircle(sq, 100, $fn=128), closed=true, width=0.5);
// Examples(2D): Standard vector anchors are based on extents
// squircle(0.8, 50) show_anchors(custom=false);
// Examples(2D): Named anchors exist for the sides and corners
// squircle(0.8, 50) show_anchors(std=false);
module squircle(squareness=0.7, size=[10,10], anchor=CENTER, spin=0) {
check = assert(squareness >= 0 && squareness <= 1);
bbox = is_num(size) ? [size,size] : point2d(size);
assert(all_positive(bbox), "All components of size must be positive.");
path = squircle(squareness, size);
anchors = let(sq = _linearize_squareness(squareness)) [
for (i = [0:1:3]) let(
ca = 360 - i*90,
cp = polar_to_xy(squircle_radius(sq, bbox[0]/2, ca), ca)
) named_anchor(str("side",i), cp, unit(cp,BACK), 0),
for (i = [0:1:3]) let(
ca = 360-45 - i*90,
cp = polar_to_xy(squircle_radius(sq, bbox[0]/2, ca), ca)
) named_anchor(str("corner",i), cp, unit(cp,BACK), 0)
];
attachable(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors) {
polygon(path);
children();
}
}
function squircle(squareness=0.7, size=[10,10]) =
assert(squareness >= 0 && squareness <= 1) [
let(
sq = _linearize_squareness(squareness),
bbox = is_num(size) ? [size,size] : point2d(size),
aspect = bbox[1] / bbox[0],
r = 0.5 * bbox[0],
astep = $fn>=12 ? 90/round($fn/4) : 9
) for(a=[360:-astep:0.01]) let(
theta = a + sq * sin(4*a) * 30/PI, // tighter angle steps at corners
p = squircle_radius(sq, r, theta)
) [p*cos(theta), aspect*p*sin(theta)]
];
function squircle_radius(squareness, r, angle) = let(
s2a = abs(squareness*sin(2*angle))
) s2a>0 ? r*sqrt(2)/s2a * sqrt(1 - sqrt(1 - s2a*s2a)) : r;
function _linearize_squareness(s) =
// from Chamberlain Fong (2016). "Squircular Calculations". arXiv.
// https://arxiv.org/pdf/1604.02174v5
let(c = 2 - 2*sqrt(2), d = 1 - 0.5*c*s)
2 * sqrt((1+c)*s*s - c*s) / (d*d);
// Section: Text // Section: Text
// Module: text() // Module: text()