distributors name normalization & bug fix

This commit is contained in:
Adrian Mariano 2022-10-22 23:15:35 -04:00
parent 01c07dc892
commit a7711edf0b
5 changed files with 295 additions and 249 deletions

View file

@ -835,7 +835,7 @@ module tag_scope(scope){
// right(20)
// circle(5);
// }
// Example: Here is another example where two children are intersected using the native intersection operator, and then tagged with {{force_tag()}}. Note that because the children are at the save level, you don't need to use a tagged operator for their intersection.
// Example: Here is another example where two children are intersected using the native intersection operator, and then tagged with {{force_tag()}}. Note that because the children are at the same level, you don't need to use a tagged operator for their intersection.
// $fn=32;
// diff()
// cuboid(10){

View file

@ -46,113 +46,6 @@ module move_copies(a=[[0,0,0]])
}
// Function&Module: line_of()
//
// Usage: Place `n` copies at a given spacing along the line
// line_of(spacing, [n], [p1=]) CHILDREN;
// Usage: Place as many copies as will fit at a given spacing
// line_of(spacing, [l=], [p1=]) CHILDREN;
// Usage: Place `n` copies along the length of the line
// line_of([n=], [l=], [p1=]) CHILDREN;
// Usage: Place `n` copies along the line from `p1` to `p2`
// line_of([n=], [p1=], [p2=]) CHILDREN;
// Usage: Place copies at the given spacing, centered along the line from `p1` to `p2`
// line_of([spacing], [p1=], [p2=]) CHILDREN;
// Usage: As a function
// pts = line_of([spacing], [n], [p1=]);
// pts = line_of([spacing], [l=], [p1=]);
// pts = line_of([n=], [l=], [p1=]);
// pts = line_of([n=], [p1=], [p2=]);
// pts = line_of([spacing], [p1=], [p2=]);
// Description:
// When called as a function, returns a list of points at evenly spaced positions along a line.
// When called as a module, copies `children()` at one or more evenly spaced positions along a line.
// By default, the line will be centered at the origin, unless the starting point `p1` is given.
// The line will be pointed towards `RIGHT` (X+) unless otherwise given as a vector in `l`,
// `spacing`, or `p1`/`p2`. The psotion of the copies is specified in one of several ways:
// .
// If You Know... | Then Use Something Like...
// -------------------------------- | --------------------------------
// Spacing distance, Count | `line_of(spacing=10, n=5) ...` or `line_of(10, n=5) ...`
// Spacing vector, Count | `line_of(spacing=[10,5], n=5) ...` or `line_of([10,5], n=5) ...`
// Spacing distance, Line length | `line_of(spacing=10, l=50) ...` or `line_of(10, l=50) ...`
// Spacing distance, Line vector | `line_of(spacing=10, l=[50,30]) ...` or `line_of(10, l=[50,30]) ...`
// Spacing vector, Line length | `line_of(spacing=[10,5], l=50) ...` or `line_of([10,5], l=50) ...`
// Line length, Count | `line_of(l=50, n=5) ...`
// Line vector, Count | `line_of(l=[50,40], n=5) ...`
// Line endpoints, Count | `line_of(p1=[10,10], p2=[60,-10], n=5) ...`
// Line endpoints, Spacing distance | `line_of(p1=[10,10], p2=[60,-10], spacing=10) ...`
//
// Arguments:
// spacing = Either the scalar spacing distance along the X+ direction, or the vector giving both the direction and spacing distance between each set of copies.
// n = Number of copies to distribute along the line. (Default: 2)
// ---
// l = Either the scalar length of the line, or a vector giving both the direction and length of the line.
// p1 = If given, specifies the starting point of the line.
// p2 = If given with `p1`, specifies the ending point of line, and indirectly calculates the line length.
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Examples:
// line_of(10) sphere(d=1);
// line_of(10, n=5) sphere(d=1);
// line_of([10,5], n=5) sphere(d=1);
// line_of(spacing=10, n=6) sphere(d=1);
// line_of(spacing=[10,5], n=6) sphere(d=1);
// line_of(spacing=10, l=50) sphere(d=1);
// line_of(spacing=10, l=[50,30]) sphere(d=1);
// line_of(spacing=[10,5], l=50) sphere(d=1);
// line_of(l=50, n=4) sphere(d=1);
// line_of(l=[50,-30], n=4) sphere(d=1);
// Example(FlatSpin,VPD=133):
// line_of(p1=[0,0,0], p2=[5,5,20], n=6) cube(size=[3,2,1],center=true);
// Example(FlatSpin,VPD=133):
// line_of(p1=[0,0,0], p2=[5,5,20], spacing=6) cube(size=[3,2,1],center=true);
// Example: All children are copied to each position
// line_of(l=20, n=3) {
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
// Example(2D): The functional form of line_of() returns a list of points.
// pts = line_of([10,5],n=5);
// move_copies(pts) circle(d=2);
module line_of(spacing, n, l, p1, p2)
{
req_children($children);
pts = line_of(spacing=spacing, n=n, l=l, p1=p1, p2=p2);
for (i=idx(pts)) {
$idx = i;
$pos = pts[i];
translate($pos) children();
}
}
function line_of(spacing, n, l, p1, p2) =
assert(is_undef(spacing) || is_finite(spacing) || is_vector(spacing))
assert(is_undef(n) || is_finite(n))
assert(is_undef(l) || is_finite(l) || is_vector(l))
assert(is_undef(p1) || is_vector(p1))
assert(is_undef(p2) || is_vector(p2))
let(
ll = !is_undef(l)? scalar_vec3(l, 0) :
(!is_undef(spacing) && !is_undef(n))? ((n-1) * scalar_vec3(spacing, 0)) :
(!is_undef(p1) && !is_undef(p2))? point3d(p2-p1) :
undef,
cnt = !is_undef(n)? n :
(!is_undef(spacing) && !is_undef(ll))? floor(norm(ll) / norm(scalar_vec3(spacing, 0)) + 1.000001) :
2,
spc = cnt<=1? [0,0,0] :
is_undef(spacing)? (ll/(cnt-1)) :
is_num(spacing) && !is_undef(ll)? (ll/(cnt-1)) :
scalar_vec3(spacing, 0)
)
assert(!is_undef(cnt), "Need two of `spacing`, 'l', 'n', or `p1`/`p2` arguments in `line_of()`.")
let( spos = !is_undef(p1)? point3d(p1) : -(cnt-1)/2 * spc )
[for (i=[0:1:cnt-1]) i * spc + spos];
// Module: xcopies()
//
// Description:
@ -192,12 +85,14 @@ module xcopies(spacing, n, l, sp)
sp = is_finite(sp)? (sp*dir) : sp;
if (is_vector(spacing)) {
translate(default(sp,[0,0,0])) {
for (x = spacing) {
translate(x*dir) children();
for (i = idx(spacing)) {
$idx = i;
$pos = spacing[i]*dir;
translate($pos) children();
}
}
} else {
line_of(
line_copies(
l=u_mul(l,dir),
spacing=u_mul(spacing,dir),
n=n, p1=sp
@ -245,12 +140,14 @@ module ycopies(spacing, n, l, sp)
sp = is_finite(sp)? (sp*dir) : sp;
if (is_vector(spacing)) {
translate(default(sp,[0,0,0])) {
for (x = spacing) {
translate(x*dir) children();
for (i = idx(spacing)) {
$idx = i;
$pos = spacing[i]*dir;
translate($pos) children();
}
}
} else {
line_of(
line_copies(
l=u_mul(l,dir),
spacing=u_mul(spacing,dir),
n=n, p1=sp
@ -312,12 +209,14 @@ module zcopies(spacing, n, l, sp)
sp = is_finite(sp)? (sp*dir) : sp;
if (is_vector(spacing)) {
translate(default(sp,[0,0,0])) {
for (x = spacing) {
translate(x*dir) children();
for (i = idx(spacing)) {
$idx = i;
$pos = spacing[i]*dir;
translate($pos) children();
}
}
} else {
line_of(
line_copies(
l=u_mul(l,dir),
spacing=u_mul(spacing,dir),
n=n, p1=sp
@ -327,6 +226,121 @@ module zcopies(spacing, n, l, sp)
// Function&Module: line_copies()
//
// Usage: Place `n` copies at a given spacing along the line
// line_copies(spacing, [n], [p1=]) CHILDREN;
// Usage: Place as many copies as will fit at a given spacing
// line_copies(spacing, [l=], [p1=]) CHILDREN;
// Usage: Place `n` copies along the length of the line
// line_copies([n=], [l=], [p1=]) CHILDREN;
// Usage: Place `n` copies along the line from `p1` to `p2`
// line_copies([n=], [p1=], [p2=]) CHILDREN;
// Usage: Place copies at the given spacing, centered along the line from `p1` to `p2`
// line_copies([spacing], [p1=], [p2=]) CHILDREN;
// Usage: As a function
// pts = line_copies([spacing], [n], [p1=]);
// pts = line_copies([spacing], [l=], [p1=]);
// pts = line_copies([n=], [l=], [p1=]);
// pts = line_copies([n=], [p1=], [p2=]);
// pts = line_copies([spacing], [p1=], [p2=]);
// Description:
// When called as a function, returns a list of points at evenly spaced positions along a line.
// When called as a module, copies `children()` at one or more evenly spaced positions along a line.
// By default, the line will be centered at the origin, unless the starting point `p1` is given.
// The line will be pointed towards `RIGHT` (X+) unless otherwise given as a vector in `l`,
// `spacing`, or `p1`/`p2`. The psotion of the copies is specified in one of several ways:
// .
// If You Know... | Then Use Something Like...
// -------------------------------- | --------------------------------
// Spacing distance, Count | `line_copies(spacing=10, n=5) ...` or `line_copies(10, n=5) ...`
// Spacing vector, Count | `line_copies(spacing=[10,5], n=5) ...` or `line_copies([10,5], n=5) ...`
// Spacing distance, Line length | `line_copies(spacing=10, l=50) ...` or `line_copies(10, l=50) ...`
// Spacing distance, Line vector | `line_copies(spacing=10, l=[50,30]) ...` or `line_copies(10, l=[50,30]) ...`
// Spacing vector, Line length | `line_copies(spacing=[10,5], l=50) ...` or `line_copies([10,5], l=50) ...`
// Line length, Count | `line_copies(l=50, n=5) ...`
// Line vector, Count | `line_copies(l=[50,40], n=5) ...`
// Line endpoints, Count | `line_copies(p1=[10,10], p2=[60,-10], n=5) ...`
// Line endpoints, Spacing distance | `line_copies(p1=[10,10], p2=[60,-10], spacing=10) ...`
//
// Arguments:
// spacing = Either the scalar spacing distance along the X+ direction, or the vector giving both the direction and spacing distance between each set of copies.
// n = Number of copies to distribute along the line. (Default: 2)
// ---
// l = Either the scalar length of the line, or a vector giving both the direction and length of the line.
// p1 = If given, specifies the starting point of the line.
// p2 = If given with `p1`, specifies the ending point of line, and indirectly calculates the line length.
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Examples:
// line_copies(10) sphere(d=1);
// line_copies(10, n=5) sphere(d=1);
// line_copies([10,5], n=5) sphere(d=1);
// line_copies(spacing=10, n=6) sphere(d=1);
// line_copies(spacing=[10,5], n=6) sphere(d=1);
// line_copies(spacing=10, l=50) sphere(d=1);
// line_copies(spacing=10, l=[50,30]) sphere(d=1);
// line_copies(spacing=[10,5], l=50) sphere(d=1);
// line_copies(l=50, n=4) sphere(d=1);
// line_copies(l=[50,-30], n=4) sphere(d=1);
// Example(FlatSpin,VPD=133):
// line_copies(p1=[0,0,0], p2=[5,5,20], n=6) cube(size=[3,2,1],center=true);
// Example(FlatSpin,VPD=133):
// line_copies(p1=[0,0,0], p2=[5,5,20], spacing=6) cube(size=[3,2,1],center=true);
// Example: All children are copied to each position
// line_copies(l=20, n=3) {
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
// Example(2D): The functional form of line_copies() returns a list of points.
// pts = line_copies([10,5],n=5);
// move_copies(pts) circle(d=2);
module line_of(spacing, n, l, p1, p2) {
deprecate("line_copies");
line_copies(spacing, n, l, p1, p2);
}
module line_copies(spacing, n, l, p1, p2)
{
req_children($children);
pts = line_copies(spacing=spacing, n=n, l=l, p1=p1, p2=p2);
for (i=idx(pts)) {
$idx = i;
$pos = pts[i];
translate($pos) children();
}
}
function line_copies(spacing, n, l, p1, p2) =
assert(is_undef(spacing) || is_finite(spacing) || is_vector(spacing))
assert(is_undef(n) || is_finite(n))
assert(is_undef(l) || is_finite(l) || is_vector(l))
assert(is_undef(p1) || is_vector(p1))
assert(is_undef(p2) || is_vector(p2))
let(
ll = !is_undef(l)? scalar_vec3(l, 0) :
(!is_undef(spacing) && !is_undef(n))? ((n-1) * scalar_vec3(spacing, 0)) :
(!is_undef(p1) && !is_undef(p2))? point3d(p2-p1) :
undef,
cnt = !is_undef(n)? n :
(!is_undef(spacing) && !is_undef(ll))? floor(norm(ll) / norm(scalar_vec3(spacing, 0)) + 1.000001) :
2,
spc = cnt<=1? [0,0,0] :
is_undef(spacing)? (ll/(cnt-1)) :
is_num(spacing) && !is_undef(ll)? (ll/(cnt-1)) :
scalar_vec3(spacing, 0)
)
assert(!is_undef(cnt), "Need two of `spacing`, 'l', 'n', or `p1`/`p2` arguments in `line_copies()`.")
let( spos = !is_undef(p1)? point3d(p1) : -(cnt-1)/2 * spc )
[for (i=[0:1:cnt-1]) i * spc + spos];
// Module: grid_copies()
@ -743,14 +757,14 @@ module zrot_copies(rots=[], cp=[0,0,0], n, sa=0, r, d, subrot=true)
}
// Module: arc_of()
// Module: arc_copies()
//
// Description:
// Evenly distributes n duplicate children around an ovoid arc on the XY plane.
//
// Usage:
// arc_of(n, r|d=, [sa=], [ea=], [rot=]) CHILDREN;
// arc_of(n, rx=|dx=, ry=|dy=, [sa=], [ea=], [rot=]) CHILDREN;
// arc_copies(n, r|d=, [sa=], [ea=], [rot=]) CHILDREN;
// arc_copies(n, rx=|dx=, ry=|dy=, [sa=], [ea=], [rot=]) CHILDREN;
//
// Arguments:
// n = number of copies to distribute around the circle. (Default: 6)
@ -772,24 +786,30 @@ module zrot_copies(rots=[], cp=[0,0,0], n, sa=0, r, d, subrot=true)
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(d=40, n=5) cube(size=[10,3,3],center=true);
// arc_copies(d=40, n=5) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(d=40, n=5, sa=45, ea=225) cube(size=[10,3,3],center=true);
// arc_copies(d=40, n=5, sa=45, ea=225) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(r=15, n=8, rot=false) cube(size=[10,3,3],center=true);
// arc_copies(r=15, n=8, rot=false) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(rx=20, ry=10, n=8) cube(size=[10,3,3],center=true);
// arc_copies(rx=20, ry=10, n=8) cube(size=[10,3,3],center=true);
// Example(2D): Using `$idx` to alternate shapes
// arc_of(r=50, n=19, sa=0, ea=180)
// arc_copies(r=50, n=19, sa=0, ea=180)
// if ($idx % 2 == 0) rect(6);
// else circle(d=6);
module arc_of(
function arc_copies(n=6,r,rx,ry,d,dx,dy,sa=0,ea=360,rot=true) = no_function("arc_copies");
module arc_of(n=6,r,rx,ry,d,dx,dy,sa=0,ea=360,rot=true){
deprecate("arc_copies");
arc_copies(n,r,rx,ry,d,dx,dy,sa,ea,rot);
}
module arc_copies(
n=6,
r=undef,
rx=undef, ry=undef,
@ -1046,61 +1066,6 @@ module path_copies(path, n, spacing, sp=undef, dist, rotate_children=true, dist,
//////////////////////////////////////////////////////////////////////
// Module: mirror_copy()
//
// Description:
// Makes a copy of the children, mirrored across the given plane.
//
// Usage:
// mirror_copy(v, [cp], [offset]) CHILDREN;
//
// Arguments:
// v = The normal vector of the plane to mirror across.
// offset = distance to offset away from the plane.
// cp = A point that lies on the mirroring plane.
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// mirror_copy([1,-1,0]) zrot(-45) yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) zrot(-45) cube([0.01,15,15], center=true);
//
// Example:
// mirror_copy([1,1,0], offset=5) rot(a=90,v=[-1,1,0]) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) zrot(45) cube([0.01,15,15], center=true);
//
// Example:
// mirror_copy(UP+BACK, cp=[0,-5,-5]) rot(from=UP, to=BACK+UP) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) translate([0,-5,-5]) rot(from=UP, to=BACK+UP) cube([15,15,0.01], center=true);
module mirror_copy(v=[0,0,1], offset=0, cp)
{
req_children($children);
cp = is_vector(v,4)? plane_normal(v) * v[3] :
is_vector(cp)? cp :
is_num(cp)? cp*unit(v) :
[0,0,0];
nv = is_vector(v,4)? plane_normal(v) : unit(v);
off = nv*offset;
if (cp == [0,0,0]) {
translate(off) {
$orig = true;
$idx = 0;
children();
}
mirror(nv) translate(off) {
$orig = false;
$idx = 1;
children();
}
} else {
translate(off) children();
translate(cp) mirror(nv) translate(-cp) translate(off) children();
}
}
// Module: xflip_copy()
//
// Description:
@ -1202,56 +1167,67 @@ module zflip_copy(offset=0, z=0)
mirror_copy(v=[0,0,1], offset=offset, cp=[0,0,z]) children();
}
// Module: mirror_copy()
//
// Description:
// Makes a copy of the children, mirrored across the given plane.
//
// Usage:
// mirror_copy(v, [cp], [offset]) CHILDREN;
//
// Arguments:
// v = The normal vector of the plane to mirror across.
// offset = distance to offset away from the plane.
// cp = A point that lies on the mirroring plane.
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// mirror_copy([1,-1,0]) zrot(-45) yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) zrot(-45) cube([0.01,15,15], center=true);
//
// Example:
// mirror_copy([1,1,0], offset=5) rot(a=90,v=[-1,1,0]) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) zrot(45) cube([0.01,15,15], center=true);
//
// Example:
// mirror_copy(UP+BACK, cp=[0,-5,-5]) rot(from=UP, to=BACK+UP) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) translate([0,-5,-5]) rot(from=UP, to=BACK+UP) cube([15,15,0.01], center=true);
module mirror_copy(v=[0,0,1], offset=0, cp)
{
req_children($children);
cp = is_vector(v,4)? plane_normal(v) * v[3] :
is_vector(cp)? cp :
is_num(cp)? cp*unit(v) :
[0,0,0];
nv = is_vector(v,4)? plane_normal(v) : unit(v);
off = nv*offset;
if (cp == [0,0,0]) {
translate(off) {
$orig = true;
$idx = 0;
children();
}
mirror(nv) translate(off) {
$orig = false;
$idx = 1;
children();
}
} else {
translate(off) children();
translate(cp) mirror(nv) translate(-cp) translate(off) children();
}
}
////////////////////
// Section: Distributing children individually along a line
///////////////////
// Module: distribute()
//
// Description:
// Spreads out the children individually along the direction `dir`.
// Every child is placed at a different position, in order.
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// distribute(spacing, sizes, dir) CHILDREN;
// distribute(l=, [sizes=], [dir=]) CHILDREN;
//
// Arguments:
// spacing = Spacing to add between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// dir = Vector direction to distribute copies along. Default: RIGHT
// l = Length to distribute copies along.
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// distribute(sizes=[100, 30, 50], dir=UP) {
// sphere(r=50);
// cube([10,20,30], center=true);
// cylinder(d=30, h=50, center=true);
// }
module distribute(spacing=undef, sizes=undef, dir=RIGHT, l=undef)
{
req_children($children);
gaps = ($children < 2)? [0] :
!is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] :
[for (i=[0:1:$children-2]) 0];
spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10);
gaps2 = [for (gap = gaps) gap+spc];
spos = dir * -sum(gaps2)/2;
spacings = cumsum([0, each gaps2]);
for (i=[0:1:$children-1]) {
$pos = spos + spacings[i] * dir;
$idx = i;
translate($pos) children(i);
}
}
// Module: xdistribute()
//
// Description:
@ -1391,5 +1367,53 @@ module zdistribute(spacing=10, sizes=undef, l=undef)
// Module: distribute()
//
// Description:
// Spreads out the children individually along the direction `dir`.
// Every child is placed at a different position, in order.
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// distribute(spacing, sizes, dir) CHILDREN;
// distribute(l=, [sizes=], [dir=]) CHILDREN;
//
// Arguments:
// spacing = Spacing to add between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// dir = Vector direction to distribute copies along. Default: RIGHT
// l = Length to distribute copies along.
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// distribute(sizes=[100, 30, 50], dir=UP) {
// sphere(r=50);
// cube([10,20,30], center=true);
// cylinder(d=30, h=50, center=true);
// }
module distribute(spacing=undef, sizes=undef, dir=RIGHT, l=undef)
{
req_children($children);
gaps = ($children < 2)? [0] :
!is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] :
[for (i=[0:1:$children-2]) 0];
spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10);
gaps2 = [for (gap = gaps) gap+spc];
spos = dir * -sum(gaps2)/2;
spacings = cumsum([0, each gaps2]);
for (i=[0:1:$children-1]) {
$pos = spos + spacings[i] * dir;
$idx = i;
translate($pos) children(i);
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -1595,9 +1595,9 @@ function reuleaux_polygon(n=3, r, d, anchor=CENTER, spin=0) =
// text("Foobar", size=12, font="Helvetica");
// text("Foobar", anchor=CENTER);
// text("Foobar", anchor=str("baseline",CENTER));
// Example: Using line_of() distributor
// Example: Using line_copies() distributor
// txt = "This is the string.";
// line_of(spacing=[10,-5],n=len(txt))
// line_copies(spacing=[10,-5],n=len(txt))
// text(txt[$idx], size=10, anchor=CENTER);
// Example: Using arc_of() distributor
// txt = "This is the string";

View file

@ -403,10 +403,11 @@ cylinder(h=100, d=100, center=true)
## Tagged Operations
BOSL2 introduces the concept of tags. Tags are names that can be given to attachables, so that
you can refer to them when performing `diff()`, `intersect()`, and `conv_hull()` operations.
Each object can have no more than one tag at a time.
### `diff(remove, <keep>)`
### `diff([remove], [keep])`
The `diff()` operator is used to difference away all shapes marked with the tag(s) given to
`remove=`, from the other shapes.
`remove`, from the other shapes.
For example, to difference away a child cylinder from the middle of a parent cube, you can
do this:
@ -445,7 +446,7 @@ tag("keep")cube(100, center=true)
```
If you need to mark multiple children with a tag, you can use the `tag()` module.
You can of course apply `tag()` to several children.
```openscad-3D
include <BOSL2/std.scad>
@ -458,14 +459,28 @@ cube(100, center=true)
}
```
Many of the modules that use tags have default values for their tags. For diff the default
remove tag is "remove" and the default keep tag is "keep". In this example we rely on the
default values:
```openscad-3D
include <BOSL2/std.scad>
diff()
sphere(d=100) {
tag("keep")xcyl(d=40, l=120);
tag("remove")cuboid([40,120,100]);
}
```
The parent object can be differenced away from other shapes. Tags are inherited by children,
though, so you will need to set the tags of the children as well as the parent.
```openscad-3D
include <BOSL2/std.scad>
diff("hole")
cube([20,11,45], center=true, $tag="hole")
cube([40,10,90], center=true, $tag="body");
tag("hole")cube([20,11,45], center=true)
tag("body")cube([40,10,90], center=true);
```
Tags (and therefore tag-based operations like `diff()`) only work correctly with attachable
@ -488,55 +503,62 @@ cuboid(50)
square(10,center=true);
```
### `intersect(a, <b>, <keep>)`
### `intersect([intersect], [keep])`
To perform an intersection of attachables, you can use the `intersect()` module. If given one
argument to `a=`, the parent and all children *not* tagged with that will be intersected by
everything that *is* tagged with it.
To perform an intersection of attachables, you can use the `intersect()` module. This is
specifically intended to address the situation where you want intersections involving a parent
and a child, something that is impossible with the native `intersection()` module. This module
treats the children in three groups: objects matching the `intersect` tags, objects matching
the tags listed in `keep` and the remaining objects that don't match any listed tags. The
intersection is computed between the union of the `intersect` tagged objects and the union of
the objects that don't match any listed tags. Finally the objects lsited in `keep` are union
ed with the result.
In this example the parent is intersected with a conical bounding shape.
```openscad-3D
include <BOSL2/std.scad>
intersect("bounds")
cube(100, center=true)
cylinder(h=100, d1=120, d2=95, center=true, $fn=72, $tag="bounds");
tag("bounds") cylinder(h=100, d1=120, d2=95, center=true, $fn=72);
```
If given both the `a=` and `b=` arguments, then shapes marked with tags given to `a=` will be
intersected with shapes marked with tags given to `b=`, then unioned with all other shapes.
In this example the child objects are intersected with the bounding box parent.
```openscad-3D
include <BOSL2/std.scad>
intersect("pole", "cap")
intersect("pole cap")
cube(100, center=true)
attach([TOP,RIGHT]) {
cube([40,40,80],center=true, $tag="pole");
sphere(d=40*sqrt(2), $tag="cap");
tag("pole")cube([40,40,80],center=true);
tag("cap")sphere(d=40*sqrt(2));
}
```
If the `keep=` argument is given, anything marked with tags passed to it will be unioned with
the result of the union:
The default `intersect` tag is "intersect" and the default `keep` tag is "keep". Here is an
example where "keep" is used to keep the pole from being removed by the intersection.
```openscad-3D
include <BOSL2/std.scad>
intersect("bounds", keep="pole")
intersect()
cube(100, center=true) {
cylinder(h=100, d1=120, d2=95, center=true, $fn=72, $tag="bounds");
zrot(45) xcyl(h=140, d=20, $fn=36, $tag="pole");
tag("intersect")cylinder(h=100, d1=120, d2=95, center=true, $fn=72);
tag("keep")zrot(45) xcyl(h=140, d=20, $fn=36);
}
```
### `conv_hull(keep)`
You can use the `conv_hull()` module to hull shapes together the
shapes not marked with the keep tags, before unioning the keep shapes
into the final result.
### `conv_hull([keep])`
You can use the `conv_hull()` module to hull shapes together. Objects
marked with the keep tags are excluded from the hull and unioned into the final result.
The default keep tag is "keep".
```openscad-3D
include <BOSL2/std.scad>
conv_hull("pole")
cube(50, center=true, $tag="hull") {
conv_hull()
cube(50, center=true) {
cyl(h=100, d=20);
xcyl(h=100, d=20, $tag="pole");
tag("keep")xcyl(h=100, d=20);
}
```

View file

@ -13,11 +13,11 @@ Transforms | Related Distributors
`left()`, `right()` | `xcopies()`
`fwd()`, `back()` | `ycopies()`
`down()`, `up()` | `zcopies()`
`move()`, `translate()` | `move_copies()`, `line_of()`, `grid_copies()`
`move()`, `translate()` | `move_copies()`, `line_copies()`, `grid_copies()`
`xrot()` | `xrot_copies()`
`yrot()` | `yrot_copies()`
`zrot()` | `zrot_copies()`
`rot()`, `rotate()` | `rot_copies()`, `arc_of()`
`rot()`, `rotate()` | `rot_copies()`, `arc_copies()`
`xflip()` | `xflip_copy()`
`yflip()` | `yflip_copy()`
`zflip()` | `zflip_copy()`
@ -106,24 +106,24 @@ zcopies(20, n=5, sp=[0,0,0]) sphere(d=10);
```
If you need to distribute copies along an arbitrary line, you can use the
`line_of()` command. You can give both the direction vector and the spacing
`line_copies()` command. You can give both the direction vector and the spacing
of the line of copies with the `spacing=` argument:
```openscad-3D
include <BOSL2/std.scad>
line_of(spacing=(BACK+RIGHT)*20, n=5) sphere(d=10);
line_copies(spacing=(BACK+RIGHT)*20, n=5) sphere(d=10);
```
With the `p1=` argument, you can specify the starting point of the line:
```openscad-3D
include <BOSL2/std.scad>
line_of(spacing=(BACK+RIGHT)*20, n=5, p1=[0,0,0]) sphere(d=10);
line_copies(spacing=(BACK+RIGHT)*20, n=5, p1=[0,0,0]) sphere(d=10);
```
If you give both `p1=` and `p2=`, you can nail down both the start and
endpoints of the line of copies:
```openscad-2D
include <BOSL2/std.scad>
line_of(p1=[0,100,0], p2=[100,0,0], n=4)
line_copies(p1=[0,100,0], p2=[100,0,0], n=4)
sphere(d=10);
```