Merge pull request #233 from RonaldoCMP/master

Minor changes in arrays.scad and math.scad
This commit is contained in:
Revar Desmera 2020-08-11 13:08:32 -07:00 committed by GitHub
commit a7ac480e28
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 74 additions and 33 deletions

View file

@ -1287,6 +1287,10 @@ function array_dim(v, depth=undef) =
// Function: transpose()
// Description: Returns the transposition of the given array.
// When reverse=true, the transposition is done in respect to the secondary diagonal, that is:
// .
// reverse(transpose(reverse(arr))) == transpose(arr, reverse=true)
// By default, reverse=false.
// Example:
// arr = [
// ["a", "b", "c"],
@ -1313,13 +1317,29 @@ function array_dim(v, depth=undef) =
// // ["c", "f"],
// // ]
// Example:
// arr = [
// ["a", "b", "c"],
// ["d", "e", "f"],
// ["g", "h", "i"]
// ];
// t = transpose(arr, reverse=true);
// // Returns:
// // [
// // ["i", "f", "c"],
// // ["h", "e", "b"],
// // ["g", "d", "a"]
// // ]
// Example:
// transpose([3,4,5]); // Returns: [3,4,5]
function transpose(arr) =
function transpose(arr, reverse=false) =
assert( is_list(arr) && len(arr)>0, "The array is not a vector neither a matrix." )
is_list(arr[0])
? let( l0 = len(arr[0]) )
assert([for(a=arr) if(!is_list(a) || len(a)!=l0) 1 ]==[], "The array is not a vector neither a matrix." )
[for (i=[0:1:l0-1])
reverse
? [for (i=[0:1:l0-1])
[ for (j=[0:1:len(arr)-1]) arr[len(arr)-1-j][l0-1-i] ] ]
: [for (i=[0:1:l0-1])
[ for (j=[0:1:len(arr)-1]) arr[j][i] ] ]
: assert( is_vector(arr), "The array is not a vector neither a matrix." )
arr;

View file

@ -698,9 +698,8 @@ function linear_solve(A,b) =
zeros != [] ? [] :
m<n
// avoiding input validation in back_substitute
? let( n = len(R),
Rt = [for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]] )
Q*reverse(_back_substitute(Rt,reverse(b)))
? let( n = len(R) )
Q*reverse(_back_substitute(transpose(R, reverse=true), reverse(b)))
: _back_substitute(R, transpose(Q)*b);
// Function: matrix_inverse()
@ -728,11 +727,12 @@ function qr_factor(A) =
n = len(A[0])
)
let(
qr =_qr_factor(A, column=0, m = m, n=n, Q=ident(m)),
Rzero = [
for(i=[0:m-1]) [
for(j=[0:n-1])
i>j ? 0 : qr[1][i][j]
qr =_qr_factor(A, Q=ident(m), column=0, m = m, n=n),
Rzero =
let( R = qr[1] )
[ for(i=[0:m-1]) [
let( ri = R[i] )
for(j=[0:n-1]) i>j ? 0 : ri[j]
]
]
) [qr[0],Rzero];
@ -763,8 +763,7 @@ function back_substitute(R, b, transpose = false) =
let(n=len(R))
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
transpose
? reverse(_back_substitute([for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
reverse(b)))
? reverse(_back_substitute(transpose(R, reverse=true), reverse(b)))
: _back_substitute(R,b);
function _back_substitute(R, b, x=[]) =

View file

@ -43,10 +43,12 @@ include <triangulation.scad>
// dim = list of allowed dimensions of the vectors in the path. Default: [2,3]
// fast = set to true for fast check that only looks at first entry. Default: false
function is_path(list, dim=[2,3], fast=false) =
fast? is_list(list) && is_vector(list[0]) :
is_list(list) && is_list(list[0]) && len(list)>1 &&
(is_undef(dim) || in_list(len(list[0]), force_list(dim))) &&
is_list_of(list, repeat(0,len(list[0])));
fast
? is_list(list) && is_vector(list[0])
: is_matrix(list)
&& len(list)>1
&& len(list[0])>0
&& (is_undef(dim) || in_list(len(list[0]), force_list(dim)));
// Function: is_closed_path()
@ -105,32 +107,51 @@ function path_subselect(path, s1, u1, s2, u2, closed=false) =
// Function: simplify_path()
// Description:
// Takes a path and removes unnecessary collinear points.
// Takes a path and removes unnecessary subsequent collinear points.
// Usage:
// simplify_path(path, [eps])
// Arguments:
// path = A list of 2D path points.
// path = A list of path points of any dimension.
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
function simplify_path(path, eps=EPSILON) =
len(path)<=2? path : let(
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(path, i-1, i, i+1, eps=eps)) i], [len(path)-1])
) [for (i = indices) path[i]];
assert( is_path(path), "Invalid path." )
assert( is_undef(eps) || (is_finite(eps) && (eps>=0) ), "Invalid tolerance." )
len(path)<=2 ? path
: let(
indices = [ 0,
for (i=[1:1:len(path)-2])
if (!collinear(path[i-1],path[i],path[i+1], eps=eps)) i,
len(path)-1
]
)
[for (i = indices) path[i] ];
// Function: simplify_path_indexed()
// Description:
// Takes a list of points, and a path as a list of indices into `points`,
// and removes all path points that are unecessarily collinear.
// Takes a list of points, and a list of indices into `points`,
// and removes from the list all indices of subsequent indexed points that are unecessarily collinear.
// Returns the list of the remained indices.
// Usage:
// simplify_path_indexed(path, eps)
// simplify_path_indexed(points,indices, eps)
// Arguments:
// points = A list of points.
// path = A list of indices into `points` that forms a path.
// indices = A list of indices into `points` that forms a path.
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
function simplify_path_indexed(points, path, eps=EPSILON) =
len(path)<=2? path : let(
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(points, path[i-1], path[i], path[i+1], eps=eps)) i], [len(path)-1])
) [for (i = indices) path[i]];
function simplify_path_indexed(points, indices, eps=EPSILON) =
len(indices)<=2? indices
: let(
indices = concat( indices[0],
[for (i=[1:1:len(indices)-2])
let(
i1 = indices[i-1],
i2 = indices[i],
i3 = indices[i+1]
)
if (!collinear(points[i1],points[i2],points[i3], eps=eps)) indices[i]],
indices[len(indices)-1] )
)
indices;
// Function: path_length()

View file

@ -480,6 +480,7 @@ test_array_dim();
module test_transpose() {
assert(transpose([[1,2,3],[4,5,6],[7,8,9]]) == [[1,4,7],[2,5,8],[3,6,9]]);
assert(transpose([[1,2,3],[4,5,6]]) == [[1,4],[2,5],[3,6]]);
assert(transpose([[1,2,3],[4,5,6]],reverse=true) == [[6,3], [5,2], [4,1]]);
assert(transpose([3,4,5]) == [3,4,5]);
}
test_transpose();