Fixed rotate_points3d() and vector_axis() for un-normalized co-axial vectors.

This commit is contained in:
Revar Desmera 2019-04-08 18:49:34 -07:00
parent e912908605
commit a84dec40fc

View file

@ -36,6 +36,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
include <constants.scad>
include <compat.scad> include <compat.scad>
@ -127,7 +128,9 @@ function modrange(x, y, m, step=1) =
// Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`. // Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`.
// Arguments: // Arguments:
// r = Radius of circle to get the number of segments for. // r = Radius of circle to get the number of segments for.
function segs(r) = $fn>0?($fn>3?$fn:3):(ceil(max(min(360.0/$fa,abs(r)*2*PI/$fs),5))); function segs(r) =
$fn>0? ($fn>3? $fn : 3) :
ceil(max(5, min(360/$fa, abs(r)*2*PI/$fs)));
// Function: lerp() // Function: lerp()
@ -891,13 +894,13 @@ function vector_angle(v1,v2) = acos(constrain((v1*v2)/(norm(v1)*norm(v2)), -1, 1
// v2 = Second vector. // v2 = Second vector.
function vector_axis(v1,v2) = function vector_axis(v1,v2) =
let( let(
eps = 0.00001, eps = 1e-6,
vv1 = normalize(point3d(v1)), v1 = point3d(v1/norm(v1)),
vv2 = normalize(point3d(v2)), v2 = point3d(v2/norm(v2)),
vv3 = norm(v1+v2)>eps? vv2 : v3 = (norm(v1-v2) > eps && norm(v1+v2) > eps)? v2 :
norm(vabs(vv2)-V_UP)>eps? V_UP : (norm(vabs(v2)-V_UP) > eps)? V_UP :
V_RIGHT V_RIGHT
) normalize(cross(vv1,vv3)); ) normalize(cross(v1,v3));
// Section: Coordinates Manipulation // Section: Coordinates Manipulation
@ -994,6 +997,8 @@ function rotate_points3d(pts, v=0, cp=[0,0,0], axis=undef, from=undef, to=undef,
mrot = reverse? ( mrot = reverse? (
is_def(from)? ( is_def(from)? (
let ( let (
from = from / norm(from),
to = to / norm(from),
ang = vector_angle(from, to), ang = vector_angle(from, to),
axis = vector_axis(from, to) axis = vector_axis(from, to)
) )
@ -1008,6 +1013,8 @@ function rotate_points3d(pts, v=0, cp=[0,0,0], axis=undef, from=undef, to=undef,
) : ( ) : (
is_def(from)? ( is_def(from)? (
let ( let (
from = from / norm(from),
to = to / norm(from),
ang = vector_angle(from, to), ang = vector_angle(from, to),
axis = vector_axis(from, to) axis = vector_axis(from, to)
) )
@ -1316,7 +1323,7 @@ function matrix3_zrot(ang) = [
// Returns the 4x4 matrix to perform a rotation of a 3D vector around the X axis. // Returns the 4x4 matrix to perform a rotation of a 3D vector around the X axis.
// Arguments: // Arguments:
// ang = number of degrees to rotate. // ang = number of degrees to rotate.
function matrix4_xrot(ang) = assert(ang!=undef) [ function matrix4_xrot(ang) = [
[1, 0, 0, 0], [1, 0, 0, 0],
[0, cos(ang), -sin(ang), 0], [0, cos(ang), -sin(ang), 0],
[0, sin(ang), cos(ang), 0], [0, sin(ang), cos(ang), 0],
@ -1329,7 +1336,7 @@ function matrix4_xrot(ang) = assert(ang!=undef) [
// Returns the 4x4 matrix to perform a rotation of a 3D vector around the Y axis. // Returns the 4x4 matrix to perform a rotation of a 3D vector around the Y axis.
// Arguments: // Arguments:
// ang = Number of degrees to rotate. // ang = Number of degrees to rotate.
function matrix4_yrot(ang) = assert(ang!=undef) [ function matrix4_yrot(ang) = [
[ cos(ang), 0, sin(ang), 0], [ cos(ang), 0, sin(ang), 0],
[ 0, 1, 0, 0], [ 0, 1, 0, 0],
[-sin(ang), 0, cos(ang), 0], [-sin(ang), 0, cos(ang), 0],
@ -1344,7 +1351,7 @@ function matrix4_yrot(ang) = assert(ang!=undef) [
// Returns the 4x4 matrix to perform a rotation of a 3D vector around the Z axis. // Returns the 4x4 matrix to perform a rotation of a 3D vector around the Z axis.
// Arguments: // Arguments:
// ang = number of degrees to rotate. // ang = number of degrees to rotate.
function matrix4_zrot(ang) = assert(ang!=undef) [ function matrix4_zrot(ang) = [
[cos(ang), -sin(ang), 0, 0], [cos(ang), -sin(ang), 0, 0],
[sin(ang), cos(ang), 0, 0], [sin(ang), cos(ang), 0, 0],
[ 0, 0, 1, 0], [ 0, 0, 1, 0],