diff --git a/affine.scad b/affine.scad index 4764de5..dd465db 100644 --- a/affine.scad +++ b/affine.scad @@ -202,17 +202,19 @@ function affine3d_zrot(ang) = [ // Arguments: // u = 3D axis vector to rotate around. // ang = number of degrees to rotate. -function affine3d_rot_by_axis(u, ang) = let( - u = unit(u), - c = cos(ang), - c2 = 1-c, - s = sin(ang) -) [ - [u[0]*u[0]*c2+c , u[0]*u[1]*c2-u[2]*s, u[0]*u[2]*c2+u[1]*s, 0], - [u[1]*u[0]*c2+u[2]*s, u[1]*u[1]*c2+c , u[1]*u[2]*c2-u[0]*s, 0], - [u[2]*u[0]*c2-u[1]*s, u[2]*u[1]*c2+u[0]*s, u[2]*u[2]*c2+c , 0], - [ 0, 0, 0, 1] -]; +function affine3d_rot_by_axis(u, ang) = + approx(ang,0)? affine3d_identity() : + let( + u = unit(u), + c = cos(ang), + c2 = 1-c, + s = sin(ang) + ) [ + [u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0], + [u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0], + [u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0], + [ 0, 0, 0, 1] + ]; // Function: affine3d_rot_from_to() @@ -223,18 +225,23 @@ function affine3d_rot_by_axis(u, ang) = let( // Arguments: // from = 3D axis vector to rotate from. // to = 3D axis vector to rotate to. -function affine3d_rot_from_to(from, to) = let( - u = vector_axis(from,to), - ang = vector_angle(from,to), - c = cos(ang), - c2 = 1-c, - s = sin(ang) -) [ - [u[0]*u[0]*c2+c , u[0]*u[1]*c2-u[2]*s, u[0]*u[2]*c2+u[1]*s, 0], - [u[1]*u[0]*c2+u[2]*s, u[1]*u[1]*c2+c , u[1]*u[2]*c2-u[0]*s, 0], - [u[2]*u[0]*c2-u[1]*s, u[2]*u[1]*c2+u[0]*s, u[2]*u[2]*c2+c , 0], - [ 0, 0, 0, 1] -]; +function affine3d_rot_from_to(from, to) = + let( + from = unit(point3d(from)), + to = unit(point3d(to)) + ) approx(from,to)? affine3d_identity() : + let( + u = vector_axis(from,to), + ang = vector_angle(from,to), + c = cos(ang), + c2 = 1-c, + s = sin(ang) + ) [ + [u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0], + [u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0], + [u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0], + [ 0, 0, 0, 1] + ]; // Function: affine_frame_map() @@ -246,7 +253,7 @@ function affine3d_rot_from_to(from, to) = let( // Returns a transformation that maps one coordinate frame to another. You must specify two or three of `x`, `y`, and `z`. The specified // axes are mapped to the vectors you supplied. If you give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand coordinate system. // If the vectors you give are orthogonal the result will be a rotation and the `reverse` parameter will supply the inverse map, which enables you -// to map two arbitrary coordinate systems two each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option +// to map two arbitrary coordinate systems to each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option // with non-orthogonal inputs. // Arguments: // x = Destination vector for x axis @@ -259,30 +266,35 @@ function affine3d_rot_from_to(from, to) = let( // // The next map sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1] // T = affine_frame_map(x=[0,1,1], y=[0,-1,1]) * affine_frame_map(x=[1,1,0], y=[-1,1,0],reverse=true); function affine_frame_map(x,y,z, reverse=false) = - assert(num_defined([x,y,z])>=2, "Must define at least two inputs") - let( - xvalid = is_undef(x) || (is_vector(x) && len(x)==3), - yvalid = is_undef(y) || (is_vector(y) && len(y)==3), - zvalid = is_undef(z) || (is_vector(z) && len(z)==3) - ) - assert(xvalid,"Input x must be a length 3 vector") - assert(yvalid,"Input y must be a length 3 vector") - assert(zvalid,"Input z must be a length 3 vector") - let( - x = is_def(x) ? unit(x) : undef, - y = is_def(y) ? unit(y) : undef, - z = is_def(z) ? unit(z) : undef, - map = is_undef(x) ? [cross(y,z), y, z] : - is_undef(y) ? [x, cross(z,x), z] : - is_undef(z) ? [x, y, cross(x,y)] : - [x, y, z] - ) - reverse ? - let( ocheck = approx(map[0]*map[1],0) && approx(map[0]*map[2],0) && approx(map[1]*map[2],0)) - assert(ocheck, "Inputs must be orthogonal when reverse==true") - affine2d_to_3d(map) - : - affine2d_to_3d(transpose(map)); + assert(num_defined([x,y,z])>=2, "Must define at least two inputs") + let( + xvalid = is_undef(x) || (is_vector(x) && len(x)==3), + yvalid = is_undef(y) || (is_vector(y) && len(y)==3), + zvalid = is_undef(z) || (is_vector(z) && len(z)==3) + ) + assert(xvalid,"Input x must be a length 3 vector") + assert(yvalid,"Input y must be a length 3 vector") + assert(zvalid,"Input z must be a length 3 vector") + let( + x = is_undef(x)? undef : unit(x), + y = is_undef(y)? undef : unit(y), + z = is_undef(z)? undef : unit(z), + map = is_undef(x)? [cross(y,z), y, z] : + is_undef(y)? [x, cross(z,x), z] : + is_undef(z)? [x, y, cross(x,y)] : + [x, y, z] + ) + reverse? ( + let( + ocheck = ( + approx(map[0]*map[1],0) && + approx(map[0]*map[2],0) && + approx(map[1]*map[2],0) + ) + ) + assert(ocheck, "Inputs must be orthogonal when reverse==true") + affine2d_to_3d(map) + ) : affine2d_to_3d(transpose(map)); @@ -294,8 +306,10 @@ function affine_frame_map(x,y,z, reverse=false) = // Arguments: // v = The normal vector of the plane to reflect across. function affine3d_mirror(v) = - let(v=unit(point3d(v)), a=v.x, b=v.y, c=v.z) - [ + let( + v=unit(point3d(v)), + a=v.x, b=v.y, c=v.z + ) [ [1-2*a*a, -2*a*b, -2*a*c, 0], [ -2*b*a, 1-2*b*b, -2*b*c, 0], [ -2*c*a, -2*c*b, 1-2*c*c, 0], @@ -437,11 +451,13 @@ function apply_list(points,transform_list) = // Function: is_2d_transform() -// Usage: is_2d_transform(t) -// Description: Checks if the input is a 3d transform that does not act on the z coordinate, except +// Usage: +// is_2d_transform(t) +// Description: +// Checks if the input is a 3d transform that does not act on the z coordinate, except // possibly for a simple scaling of z. Note that an input which is only a zscale returns false. function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works - t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 && + t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 && (t[2][2]==1 || !(t[0][0]==1 && t[0][1]==0 && t[1][0]==0 && t[1][1]==1)); // But rule out zscale() diff --git a/attachments.scad b/attachments.scad index f36cce5..fc8be8e 100644 --- a/attachments.scad +++ b/attachments.scad @@ -326,7 +326,7 @@ function attach_transform(anchor=CENTER, spin=0, orient=UP, geom, p) = ang = vector_angle(anch[2], DOWN), axis = vector_axis(anch[2], DOWN), ang2 = (anch[2]==UP || anch[2]==DOWN)? 0 : 180-anch[3], - axis2 = rotate_points3d([axis],[0,0,ang2])[0] + axis2 = rot(p=axis,[0,0,ang2]) ) affine3d_rot_by_axis(axis2,ang) * affine3d_zrot(ang2+spin) * diff --git a/beziers.scad b/beziers.scad index 5ab58ad..b4bcc4a 100644 --- a/beziers.scad +++ b/beziers.scad @@ -884,12 +884,14 @@ function _bezier_triangle(tri, splinesteps=16, vnf=EMPTY_VNF) = // trace_bezier_patches([patch], size=1, showcps=true); function bezier_patch_flat(size=[100,100], N=4, spin=0, orient=UP, trans=[0,0,0]) = let( - patch = [for (x=[0:1:N]) [for (y=[0:1:N]) vmul(point3d(size),[x/N-0.5, 0.5-y/N, 0])]] - ) [for (row=patch) - translate_points(v=trans, - rotate_points3d(a=spin, from=UP, to=orient, row) - ) - ]; + patch = [ + for (x=[0:1:N]) [ + for (y=[0:1:N]) + vmul(point3d(size), [x/N-0.5, 0.5-y/N, 0]) + ] + ], + m = move(trans) * rot(a=spin, from=UP, to=orient) + ) [for (row=patch) apply(m, row)]; diff --git a/coords.scad b/coords.scad index 5ef1366..2b7035d 100644 --- a/coords.scad +++ b/coords.scad @@ -100,90 +100,6 @@ function path4d(points, fill=0) = result + repeat(addition, len(result)); -// Function: rotate_points2d() -// Usage: -// rotate_points2d(pts, a, [cp]); -// Description: -// Rotates each 2D point in an array by a given amount, around an optional centerpoint. -// Arguments: -// pts = List of 3D points to rotate. -// a = Angle to rotate by. -// cp = 2D Centerpoint to rotate around. Default: `[0,0]` -function rotate_points2d(pts, a, cp=[0,0]) = - approx(a,0)? pts : - let( - cp = point2d(cp), - pts = path2d(pts), - m = affine2d_zrot(a) - ) [for (pt = pts) point2d(m*concat(pt-cp, [1])+cp)]; - - -// Function: rotate_points3d() -// Usage: -// rotate_points3d(pts, a, [cp], [reverse]); -// rotate_points3d(pts, a, v, [cp], [reverse]); -// rotate_points3d(pts, from, to, [a], [cp], [reverse]); -// Description: -// Rotates each 3D point in an array by a given amount, around a given centerpoint. -// Arguments: -// pts = List of points to rotate. -// a = Rotation angle(s) in degrees. -// v = If given, axis vector to rotate around. -// cp = Centerpoint to rotate around. -// from = If given, the vector to rotate something from. Used with `to`. -// to = If given, the vector to rotate something to. Used with `from`. -// reverse = If true, performs an exactly reversed rotation. -function rotate_points3d(pts, a=0, v=undef, cp=[0,0,0], from=undef, to=undef, reverse=false) = - assert(is_undef(from)==is_undef(to), "`from` and `to` must be given together.") - (is_undef(from) && (a==0 || a==[0,0,0]))? pts : - let ( - from = is_undef(from)? undef : (from / norm(from)), - to = is_undef(to)? undef : (to / norm(to)), - cp = point3d(cp), - pts2 = path3d(pts) - ) - (!is_undef(from) && approx(from,to) && (a==0 || a == [0,0,0]))? pts2 : - let ( - mrot = reverse? ( - !is_undef(from)? ( - assert(norm(from)>0, "The from argument cannot equal [0,0] or [0,0,0]") - assert(norm(to)>0, "The to argument cannot equal [0,0] or [0,0,0]") - let ( - ang = vector_angle(from, to), - v = vector_axis(from, to) - ) - affine3d_rot_by_axis(from, -a) * affine3d_rot_by_axis(v, -ang) - ) : !is_undef(v)? ( - affine3d_rot_by_axis(v, -a) - ) : is_num(a)? ( - affine3d_zrot(-a) - ) : ( - affine3d_xrot(-a.x) * affine3d_yrot(-a.y) * affine3d_zrot(-a.z) - ) - ) : ( - !is_undef(from)? ( - assert(norm(from)>0, "The from argument cannot equal [0,0] or [0,0,0]") - assert(norm(to)>0, "The to argument cannot equal [0,0] or [0,0,0]") - let ( - from = from / norm(from), - to = to / norm(from), - ang = vector_angle(from, to), - v = vector_axis(from, to) - ) - affine3d_rot_by_axis(v, ang) * affine3d_rot_by_axis(from, a) - ) : !is_undef(v)? ( - affine3d_rot_by_axis(v, a) - ) : is_num(a)? ( - affine3d_zrot(a) - ) : ( - affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x) - ) - ), - m = affine3d_translate(cp) * mrot * affine3d_translate(-cp) - ) - [for (pt = pts2) point3d(m*concat(pt, fill=1))]; - - // Section: Coordinate Systems diff --git a/examples/fractal_tree.scad b/examples/fractal_tree.scad index 0cb34c2..5ef423e 100644 --- a/examples/fractal_tree.scad +++ b/examples/fractal_tree.scad @@ -1,48 +1,17 @@ include -include -include - -module leaf(s) { - path = [ - [0,0], [1.5,-1], - [2,1], [0,3], [-2,1], - [-1.5,-1], [0,0] - ]; - xrot(90) - linear_sweep_bezier( - scale_points(path, [s,s]/2), - height=0.02 - ); -} - -module branches(minsize, s1, s2){ - if(s2>minsize) { +module tree(l=1500, sc=0.7, depth=10) + recolor("lightgray") + cylinder(l=l, d1=l/5, d2=l/5*sc) attach(TOP) - zrot(gaussian_rands(90,20)[0]) - zrot_copies(n=floor(log_rands(2,5,4)[0])) - zrot(gaussian_rands(0,5)[0]) - yrot(gaussian_rands(30,10)[0]) { - sc = gaussian_rands(0.7,0.05)[0]; - cylinder(d1=s2, d2=s2*sc, l=s1) - branches(minsize, s1*sc, s2*sc); - } - } else { - recolor("springgreen") - attach(TOP) zrot(90) - leaf(gaussian_rands(100,5)[0]); - } -} - -module tree(h, d, minsize) { - sc = gaussian_rands(0.7,0.05)[0]; - recolor("lightgray") { - cylinder(d1=d, d2=d*sc, l=h) { - branches(minsize, h, d*sc); - } - } -} - -tree(d=300, h=1500, minsize=10); + if (depth>0) + zrot(90) + zrot_copies(n=2) + yrot(30) tree(depth=depth-1, l=l*sc, sc=sc); + else + recolor("springgreen") + yscale(0.67) + teardrop(d=l*3, l=1, anchor=BOT, spin=90); +tree(); // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap diff --git a/examples/orientations.scad b/examples/orientations.scad index 9cabdfd..2a55d6d 100644 --- a/examples/orientations.scad +++ b/examples/orientations.scad @@ -65,7 +65,7 @@ module orient_cubes() { } for (ang = [0:90:270]) { - off = rotate_points3d([40*BACK],ang)[0]; + off = rot(p=40*BACK,ang); translate(off) { orient_cube(ang); } diff --git a/examples/randomized_fractal_tree.scad b/examples/randomized_fractal_tree.scad new file mode 100644 index 0000000..c3d2592 --- /dev/null +++ b/examples/randomized_fractal_tree.scad @@ -0,0 +1,48 @@ +include +include +include + +module leaf(s) { + path = [ + [0,0], [1.5,-1], + [2,1], [0,3], [-2,1], + [-1.5,-1], [0,0] + ]; + xrot(90) + linear_sweep_bezier( + path * s/2, + height=0.02 + ); +} + +module branches(minsize, s1, s2){ + if(s2>minsize) { + attach(TOP) + zrot(gaussian_rands(90,20)[0]) + zrot_copies(n=floor(log_rands(2,5,4)[0])) + zrot(gaussian_rands(0,5)[0]) + yrot(gaussian_rands(30,10)[0]) { + sc = gaussian_rands(0.7,0.05)[0]; + cylinder(d1=s2, d2=s2*sc, l=s1) + branches(minsize, s1*sc, s2*sc); + } + } else { + recolor("springgreen") + attach(TOP) zrot(90) + leaf(gaussian_rands(100,5)[0]); + } +} + +module tree(h, d, minsize) { + sc = gaussian_rands(0.7,0.05)[0]; + recolor("lightgray") { + cylinder(d1=d, d2=d*sc, l=h) { + branches(minsize, h, d*sc); + } + } +} + +tree(d=300, h=1500, minsize=10); + + +// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap diff --git a/hull.scad b/hull.scad index 29e7ffe..1492d85 100644 --- a/hull.scad +++ b/hull.scad @@ -88,7 +88,7 @@ module hull_points(points, fast=false) { function hull2d_path(points) = (len(points) < 3)? [] : let( a=0, b=1, - c = first_noncollinear(a, b, points, 2) + c = first_noncollinear(a, b, points) ) (c == len(points))? _hull2d_collinear(points) : let( remaining = [ for (i = [2:1:len(points)-1]) if (i != c) i ], ccw = triangle_area(points[a], points[b], points[c]) > 0, diff --git a/math.scad b/math.scad index 92af87c..15f738a 100644 --- a/math.scad +++ b/math.scad @@ -757,7 +757,11 @@ function is_matrix(A,m,n, square=false) = // approx(0.3333,1/3); // Returns: false // approx(0.3333,1/3,eps=1e-3); // Returns: true // approx(PI,3.1415926536); // Returns: true -function approx(a,b,eps=EPSILON) = let(c=a-b) (is_num(c)? abs(c) : norm(c)) <= eps; +function approx(a,b,eps=EPSILON) = + a==b? true : + a*0!=b*0? false : + is_list(a)? ([for (i=idx(a)) if(!approx(a[i],b[i],eps=eps)) 1] == []) : + (abs(a-b) <= eps); function _type_num(x) = diff --git a/polyhedra.scad b/polyhedra.scad index a25858b..1d67564 100644 --- a/polyhedra.scad +++ b/polyhedra.scad @@ -337,7 +337,7 @@ module regular_polyhedron( // Would like to orient so an edge (longest edge?) is parallel to x axis facepts = move(translation, p=select(scaled_points, faces[i])); center = mean(facepts); - rotatedface = rotate_points3d(move(-center, p=facepts), from=face_normals[i], to=[0,0,1]); + rotatedface = rot(from=face_normals[i], to=[0,0,1], p=move(-center, p=facepts)); clockwise = sortidx([for(pt=rotatedface) -atan2(pt.y,pt.x)]); $face = rotate_children? path2d(select(rotatedface,clockwise)) : @@ -682,21 +682,22 @@ function regular_polyhedron_info( facedown = facedown == true ? (stellate==false? entry[facevertices][0] : 3) : facedown, down_direction = facedown == false? [0,0,-1] : faces_normals_vertices[1][search(facedown, faces_vertex_count)[0]], - scaled_points = scalefactor * rotate_points3d(faces_normals_vertices[2], from=down_direction, to=[0,0,-1]), + scaled_points = scalefactor * rot(p=faces_normals_vertices[2], from=down_direction, to=[0,0,-1]), bounds = pointlist_bounds(scaled_points), boundtable = [bounds[0], [0,0,0], bounds[1]], translation = [for(i=[0:2]) -boundtable[1+anchor[i]][i]], - face_normals = rotate_points3d(faces_normals_vertices[1], from=down_direction, to=[0,0,-1]), + face_normals = rot(p=faces_normals_vertices[1], from=down_direction, to=[0,0,-1]), side_length = scalefactor * entry[edgelen] ) - info == "fullentry" ? [scaled_points, - translation, - stellate ? faces : face_triangles, - faces, - face_normals, - side_length*entry[in_radius]] : - info == "vnf" ? [move(translation,p=scaled_points), - stellate ? faces : face_triangles] : + info == "fullentry" ? [ + scaled_points, + translation, + stellate ? faces : face_triangles, + faces, + face_normals, + side_length*entry[in_radius] + ] : + info == "vnf" ? [move(translation,p=scaled_points), stellate ? faces : face_triangles] : info == "vertices" ? move(translation,p=scaled_points) : info == "faces" ? faces : info == "face normals" ? face_normals : diff --git a/rounding.scad b/rounding.scad index 68c5708..08a95b4 100644 --- a/rounding.scad +++ b/rounding.scad @@ -763,7 +763,7 @@ module offset_sweep( top_start_ind = len(vertices_faces_bot[0]); initial_vertices_top = zip(path, repeat(middle,len(path))); vertices_faces_top = make_polyhedron( - path, translate_points(offsets_top,[0,middle]), + path, move(p=offsets_top,[0,middle]), struct_val(top,"offset"), !clockwise, struct_val(top,"quality"), struct_val(top,"check_valid"), @@ -1278,7 +1278,7 @@ function _stroke_end(width,left, right, spec) = angle = struct_val(spec,"absolute")? angle_between_lines(left[0]-right[0],[cos(user_angle),sin(user_angle)]) : user_angle, - endseg = [center, rotate_points2d([left[0]],angle, cp=center)[0]], + endseg = [center, rot(p=[left[0]], angle, cp=center)[0]], intright = angle>0, pathclip = _path_line_intersection(intright? right : left, endseg), pathextend = line_intersection(endseg, select(intright? left:right,0,1)) diff --git a/tests/test_coords.scad b/tests/test_coords.scad index 2dc5f9d..0b321d5 100644 --- a/tests/test_coords.scad +++ b/tests/test_coords.scad @@ -54,56 +54,6 @@ module test_path4d() { test_path4d(); -module test_translate_points() { - pts = [[0,0,1], [0,1,0], [1,0,0], [0,0,-1], [0,-1,0], [-1,0,0]]; - assert(translate_points(pts, v=[1,2,3]) == [[1,2,4], [1,3,3], [2,2,3], [1,2,2], [1,1,3], [0,2,3]]); - assert(translate_points(pts, v=[-1,-2,-3]) == [[-1,-2,-2], [-1,-1,-3], [0,-2,-3], [-1,-2,-4], [-1,-3,-3], [-2,-2,-3]]); - assert(translate_points(pts, v=[1,2]) == [[1,2,1], [1,3,0], [2,2,0], [1,2,-1], [1,1,0], [0,2,0]]); - pts2 = [[0,1], [1,0], [0,-1], [-1,0]]; - assert(translate_points(pts2, v=[1,2]) == [[1,3], [2,2], [1,1], [0,2]]); -} -test_translate_points(); - - -module test_scale_points() { - pts = [[0,0,1], [0,1,0], [1,0,0], [0,0,-1], [0,-1,0], [-1,0,0]]; - assert(scale_points(pts, v=[2,3,4]) == [[0,0,4], [0,3,0], [2,0,0], [0,0,-4], [0,-3,0], [-2,0,0]]); - assert(scale_points(pts, v=[-2,-3,-4]) == [[0,0,-4], [0,-3,0], [-2,0,0], [0,0,4], [0,3,0], [2,0,0]]); - assert(scale_points(pts, v=[1,1,1]) == [[0,0,1], [0,1,0], [1,0,0], [0,0,-1], [0,-1,0], [-1,0,0]]); - assert(scale_points(pts, v=[-1,-1,-1]) == [[0,0,-1], [0,-1,0], [-1,0,0], [0,0,1], [0,1,0], [1,0,0]]); - pts2 = [[0,1], [1,0], [0,-1], [-1,0]]; - assert(scale_points(pts2, v=[2,3]) == [[0,3], [2,0], [0,-3], [-2,0]]); -} -test_scale_points(); - - -module test_rotate_points2d() { - pts = [[0,1], [1,0], [0,-1], [-1,0]]; - s = sin(45); - assert(rotate_points2d(pts,45) == [[-s,s],[s,s],[s,-s],[-s,-s]]); - assert(rotate_points2d(pts,90) == [[-1,0],[0,1],[1,0],[0,-1]]); - assert(rotate_points2d(pts,90,cp=[1,0]) == [[0,-1],[1,0],[2,-1],[1,-2]]); -} -test_rotate_points2d(); - - -module test_rotate_points3d() { - pts = [[0,0,1], [0,1,0], [1,0,0], [0,0,-1], [0,-1,0], [-1,0,0]]; - assert(rotate_points3d(pts, [90,0,0]) == [[0,-1,0], [0,0,1], [1,0,0], [0,1,0], [0,0,-1], [-1,0,0]]); - assert(rotate_points3d(pts, [0,90,0]) == [[1,0,0], [0,1,0], [0,0,-1], [-1,0,0], [0,-1,0], [0,0,1]]); - assert(rotate_points3d(pts, [0,0,90]) == [[0,0,1], [-1,0,0], [0,1,0], [0,0,-1], [1,0,0], [0,-1,0]]); - assert(rotate_points3d(pts, [0,0,90],cp=[2,0,0]) == [[2,-2,1], [1,-2,0], [2,-1,0], [2,-2,-1], [3,-2,0], [2,-3,0]]); - assert(rotate_points3d(pts, 90, v=UP) == [[0,0,1], [-1,0,0], [0,1,0], [0,0,-1], [1,0,0], [0,-1,0]]); - assert(rotate_points3d(pts, 90, v=DOWN) == [[0,0,1], [1,0,0], [0,-1,0], [0,0,-1], [-1,0,0], [0,1,0]]); - assert(rotate_points3d(pts, 90, v=RIGHT) == [[0,-1,0], [0,0,1], [1,0,0], [0,1,0], [0,0,-1], [-1,0,0]]); - assert(rotate_points3d(pts, from=UP, to=BACK) == [[0,1,0], [0,0,-1], [1,0,0], [0,-1,0], [0,0,1], [-1,0,0]]); - assert(rotate_points3d(pts, 90, from=UP, to=BACK), [[0,1,0], [-1,0,0], [0,0,-1], [0,-1,0], [1,0,0], [0,0,1]]); - assert(rotate_points3d(pts, from=UP, to=UP*2) == [[0,0,1], [0,1,0], [1,0,0], [0,0,-1], [0,-1,0], [-1,0,0]]); - assert(rotate_points3d(pts, from=UP, to=DOWN*2) == [[0,0,-1], [0,1,0], [-1,0,0], [0,0,1], [0,-1,0], [1,0,0]]); -} -test_rotate_points3d(); - - module test_polar_to_xy() { assert(approx(polar_to_xy(20,45), [20/sqrt(2), 20/sqrt(2)])); assert(approx(polar_to_xy(20,135), [-20/sqrt(2), 20/sqrt(2)])); diff --git a/tests/test_quaternions.scad b/tests/test_quaternions.scad index 4331ff0..4aeb08c 100644 --- a/tests/test_quaternions.scad +++ b/tests/test_quaternions.scad @@ -11,11 +11,11 @@ function rec_cmp(a,b,eps=1e-9) = module verify_f(actual,expected) { if (!rec_cmp(actual,expected)) { - echo(str("Expected: ",fmtf(expected,10))); + echo(str("Expected: ",fmt_float(expected,10))); echo(str(" : ",expected)); - echo(str("Actual : ",fmtf(actual,10))); + echo(str("Actual : ",fmt_float(actual,10))); echo(str(" : ",actual)); - echo(str("Delta : ",fmtf(expected-actual,10))); + echo(str("Delta : ",fmt_float(expected-actual,10))); echo(str(" : ",expected-actual)); assert(approx(expected,actual)); } diff --git a/tests/test_transforms.scad b/tests/test_transforms.scad new file mode 100644 index 0000000..1db7ff5 --- /dev/null +++ b/tests/test_transforms.scad @@ -0,0 +1,159 @@ +include + +module test(got,expect,extra_info) { + if ( + is_undef(expect) != is_undef(got) || + expect*0 != got*0 || + (is_vnf(expect) && !all([for (i=idx(expect[0])) approx(got[0][i],expect[0][i])]) && got[1]!=expect[1]) || + (is_matrix(expect) && !all([for (i=idx(expect)) approx(got[i],expect[i])])) || + (got!=expect && !approx(got, expect)) + ) { + fmt = is_int(expect)? "{:.14i}" : + is_num(expect)? "{:.14g}" : + is_vector(expect)? "{:.14g}" : + "{}"; + echofmt(str("Expected: ",fmt),[expect]); + echofmt(str("But Got : ",fmt),[got]); + if (expect*0 == got*0) { + echofmt(str("Delta is: ",fmt),[expect-got]); + } + if (!is_undef(extra_info)) { + echo(str("Extra Info: ",extra_info)); + } + assert(false, "TEST FAILED!"); + } +} + + +module test_rot() { + pts2d = 50 * [for (x=[-1,0,1],y=[-1,0,1]) [x,y]]; + pts3d = 50 * [for (x=[-1,0,1],y=[-1,0,1],z=[-1,0,1]) [x,y,z]]; + vecs2d = [ + for (x=[-1,0,1], y=[-1,0,1]) if(x!=0||y!=0) [x,y], + polar_to_xy(1, -75), + polar_to_xy(1, 75) + ]; + vecs3d = [ + LEFT, RIGHT, FRONT, BACK, DOWN, UP, + spherical_to_xyz(1, -30, 45), + spherical_to_xyz(1, 0, 45), + spherical_to_xyz(1, 30, 45), + spherical_to_xyz(2, 30, 45), + spherical_to_xyz(1, -30, 135), + spherical_to_xyz(2, -30, 135), + spherical_to_xyz(1, 0, 135), + spherical_to_xyz(1, 30, 135), + spherical_to_xyz(1, -30, 75), + spherical_to_xyz(1, 45, 45), + ]; + angs = [-180, -90, -45, 0, 30, 45, 90]; + for (a = [-360*3:360:360*3]) { + test(rot(a), affine3d_identity(), extra_info=str("rot(",a,") != identity")); + test(rot(a,p=pts2d), pts2d, extra_info=str("rot(",a,",p=...), 2D")); + test(rot(a,p=pts3d), pts3d, extra_info=str("rot(",a,",p=...), 3D")); + } + test(rot(90), [[0,-1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]) + for (a=angs) { + test(rot(a), affine3d_zrot(a), extra_info=str("Z angle (only) = ",a)); + test(rot([a,0,0]), affine3d_xrot(a), extra_info=str("X angle = ",a)); + test(rot([0,a,0]), affine3d_yrot(a), extra_info=str("Y angle = ",a)); + test(rot([0,0,a]), affine3d_zrot(a), extra_info=str("Z angle = ",a)); + + test(rot(a,p=pts2d), apply(affine3d_zrot(a),pts2d), extra_info=str("Z angle (only) = ",a, ", p=..., 2D")); + test(rot([0,0,a],p=pts2d), apply(affine3d_zrot(a),pts2d), extra_info=str("Z angle = ",a, ", p=..., 2D")); + + test(rot(a,p=pts3d), apply(affine3d_zrot(a),pts3d), extra_info=str("Z angle (only) = ",a, ", p=..., 3D")); + test(rot([a,0,0],p=pts3d), apply(affine3d_xrot(a),pts3d), extra_info=str("X angle = ",a, ", p=..., 3D")); + test(rot([0,a,0],p=pts3d), apply(affine3d_yrot(a),pts3d), extra_info=str("Y angle = ",a, ", p=..., 3D")); + test(rot([0,0,a],p=pts3d), apply(affine3d_zrot(a),pts3d), extra_info=str("Z angle = ",a, ", p=..., 3D")); + } + for (xa=angs, ya=angs, za=angs) { + test( + rot([xa,ya,za]), + affine3d_chain([ + affine3d_xrot(xa), + affine3d_yrot(ya), + affine3d_zrot(za) + ]), + extra_info=str("[X,Y,Z] = ",[xa,ya,za]) + ); + test( + rot([xa,ya,za],p=pts3d), + apply( + affine3d_chain([ + affine3d_xrot(xa), + affine3d_yrot(ya), + affine3d_zrot(za) + ]), + pts3d + ), + extra_info=str("[X,Y,Z] = ",[xa,ya,za], ", p=...") + ); + } + for (vec1 = vecs3d) { + for (ang = angs) { + test( + rot(a=ang, v=vec1), + affine3d_rot_by_axis(vec1,ang), + extra_info=str("a = ",ang,", v = ", vec1) + ); + test( + rot(a=ang, v=vec1, p=pts3d), + apply(affine3d_rot_by_axis(vec1,ang), pts3d), + extra_info=str("a = ",ang,", v = ", vec1, ", p=...") + ); + } + } + for (vec1 = vecs2d) { + for (vec2 = vecs2d) { + test( + rot(from=vec1, to=vec2, p=pts2d, planar=true), + apply(affine2d_zrot(vang(vec2)-vang(vec1)), pts2d), + extra_info=str( + "from = ", vec1, ", ", + "to = ", vec2, ", ", + "planar = ", true, ", ", + "p=..., 2D" + ) + ); + } + } + for (vec1 = vecs3d) { + for (vec2 = vecs3d) { + for (a = angs) { + test( + rot(from=vec1, to=vec2, a=a), + affine3d_chain([ + affine3d_zrot(a), + affine3d_rot_from_to(vec1,vec2) + ]), + extra_info=str( + "from = ", vec1, ", ", + "to = ", vec2, ", ", + "a = ", a + ) + ); + test( + rot(from=vec1, to=vec2, a=a, p=pts3d), + apply( + affine3d_chain([ + affine3d_zrot(a), + affine3d_rot_from_to(vec1,vec2) + ]), + pts3d + ), + extra_info=str( + "from = ", vec1, ", ", + "to = ", vec2, ", ", + "a = ", a, ", ", + "p=..., 3D" + ) + ); + } + } + } +} +test_rot(); + + +// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap diff --git a/threading.scad b/threading.scad index bf3c7e8..0698a5b 100644 --- a/threading.scad +++ b/threading.scad @@ -60,7 +60,7 @@ module thread_helix(base_d, pitch, thread_depth=undef, thread_angle=15, twist=72 [0, -cap/2-dz], ] ); - pline = scale(pitch, p=profile); + pline = profile * pitch; dir = left_handed? -1 : 1; idir = internal? -1 : 1; attachable(anchor,spin,orient, r=r, l=h) { diff --git a/transforms.scad b/transforms.scad index abe7269..64bfae5 100644 --- a/transforms.scad +++ b/transforms.scad @@ -337,102 +337,56 @@ function up(z=0,p=undef) = move([0,0,z],p=p); // stroke(rot(30,p=path), closed=true); module rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false) { - if (!is_undef(cp)) { - translate(cp) rot(a=a, v=v, from=from, to=to, reverse=reverse) translate(-cp) children(); - } else if (!is_undef(from)) { - assert(!is_undef(to), "`from` and `to` should be used together."); - from = point3d(from); - to = point3d(to); - axis = vector_axis(from, to); - ang = vector_angle(from, to); - if (ang < 0.0001 && a == 0) { - children(); // May be slightly faster? - } else if (reverse) { - rotate(a=-ang, v=axis) rotate(a=-a, v=from) children(); - } else { - rotate(a=ang, v=axis) rotate(a=a, v=from) children(); - } - } else if (a == 0) { - children(); // May be slightly faster? - } else if (reverse) { - if (!is_undef(v)) { - rotate(a=-a, v=v) children(); - } else if (is_num(a)) { - rotate(-a) children(); - } else { - rotate([-a[0],0,0]) rotate([0,-a[1],0]) rotate([0,0,-a[2]]) children(); - } - } else { - rotate(a=a, v=v) children(); - } + m = rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, planar=false); + multmatrix(m) children(); } -function rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false, p=undef, planar=false) = +function rot(a=0, v, cp, from, to, reverse=false, planar=false, p, _m) = assert(is_undef(from)==is_undef(to), "from and to must be specified together.") - let( - rev = reverse? -1 : 1, - from = is_undef(from)? undef : point3d(from), - to = is_undef(to)? undef : point3d(to) - ) is_undef(p)? ( - is_undef(cp)? ( - planar? ( - is_undef(from)? affine2d_zrot(a*rev) : - affine2d_zrot(vector_angle(from,to)*sign(vector_axis(from,to)[2])*rev) - ) : ( - !is_undef(from)? affine3d_chain([ - affine3d_zrot(a*rev), - affine3d_rot_by_axis( - vector_axis(from,to), - vector_angle(from,to)*rev - ) - ]) : - !is_undef(v)? affine3d_rot_by_axis(v,a*rev) : - is_num(a)? affine3d_zrot(a*rev) : - reverse? affine3d_chain([affine3d_zrot(-a.z),affine3d_yrot(-a.y),affine3d_xrot(-a.x)]) : - affine3d_chain([affine3d_xrot(a.x),affine3d_yrot(a.y),affine3d_zrot(a.z)]) - ) - ) : ( - planar? ( - affine2d_chain([ - move(-cp), - rot(a=a, v=v, from=from, to=to, reverse=reverse, planar=true), - move(cp) - ]) - ) : ( - affine3d_chain([ - move(-cp), - rot(a=a, v=v, from=from, to=to, reverse=reverse), - move(cp) - ]) - ) - ) + planar? let( + cp = is_undef(cp)? cp : point2d(cp), + m1 = is_undef(from)? affine2d_zrot(a) : + assert(is_vector(from)) + assert(!approx(norm(from),0)) + assert(approx(point3d(from).z, 0)) + assert(is_vector(to)) + assert(!approx(norm(to),0)) + assert(approx(point3d(to).z, 0)) + affine2d_zrot( + vang(point2d(to)) - + vang(point2d(from)) + ), + m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)), + m3 = reverse? matrix_inverse(m2) : m2 + ) m3 : let( + from = is_undef(from)? undef : point3d(from), + to = is_undef(to)? undef : point3d(to), + cp = is_undef(cp)? undef : point3d(cp), + m1 = !is_undef(from)? ( + assert(is_vector(from)) + assert(!approx(norm(from),0)) + assert(is_vector(to)) + assert(!approx(norm(to),0)) + affine3d_rot_from_to(from,to) * affine3d_zrot(a) + ) : + !is_undef(v)? affine3d_rot_by_axis(v,a) : + is_num(a)? affine3d_zrot(a) : + affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x), + m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)), + m3 = reverse? matrix_inverse(m2) : m2 + ) m3 ) : ( assert(is_list(p)) - is_num(p.x)? ( - rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=[p], planar=planar)[0] - ) : is_vnf(p)? ( - [rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=p.x, planar=planar), p.y] - ) : is_list(p.x) && is_list(p.x.x)? ( - [for (l=p) rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=l, planar=planar)] - ) : ( - ( - (planar || (p!=[] && len(p[0])==2)) && !( - (is_vector(a) && norm(point2d(a))>0) || - (!is_undef(v) && norm(point2d(v))>0 && !approx(a,0)) || - (!is_undef(from) && !approx(from,to) && !(abs(point3d(from).z)>0 || abs(point3d(to).z))) || - (!is_undef(from) && approx(from,to) && norm(point2d(from))>0 && a!=0) - ) - )? ( - is_undef(from)? rotate_points2d(p, a=a*rev, cp=cp) : ( - approx(from,to)&&approx(a,0)? p : - rotate_points2d(p, a=vector_angle(from,to)*sign(vector_axis(from,to)[2])*rev, cp=cp) - ) - ) : ( - let( cp = is_undef(cp)? [0,0,0] : cp ) - rotate_points3d(p, a=a, v=v, cp=cp, from=from, to=to, reverse=reverse) - ) - ) + let( + m = !is_undef(_m)? _m : + rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, planar=planar), + res = p==[]? [] : + is_vector(p)? apply(m, p) : + is_vnf(p)? [apply(m, p[0]), p[1]] : + is_list(p[0])? [for (pp=p) rot(p=pp, _m=m)] : + assert(false, "The p argument for rot() is not a point, path, patch, matrix, or VNF.") + ) res ); @@ -784,8 +738,9 @@ function mirror(v, p) = assert(is_list(p)) let(m = len(v)==2? affine2d_mirror(v) : affine3d_mirror(v)) is_undef(p)? m : + is_num(p.x)? apply(m,p) : is_vnf(p)? [mirror(v=v,p=p[0]), [for (face=p[1]) reverse(face)]] : - apply(m, p); + [for (l=p) is_vector(l)? apply(m,l) : mirror(v=v, p=l)]; // Function&Module: xflip() diff --git a/tutorials/Fractal_Tree.md b/tutorials/Fractal_Tree.md new file mode 100644 index 0000000..095f6d6 --- /dev/null +++ b/tutorials/Fractal_Tree.md @@ -0,0 +1,139 @@ +# Fractal Tree Tutorial + +### Start with a Tree Trunk + +Firstoff, include the BOSL2 library, then add a tapered cylinder for the tree trunk. + +```openscad-example +include +cylinder(l=1500, d1=300, d2=210); +``` + +### Parameterize It + +It's easier to adjust a model if you split out the defining parameters. + +```openscad-example +include +l = 1500; +sc = 0.7; +cylinder(l=l, d1=l/5, d2=l/5*sc); +``` + +### Attaching Branches + +You can attach branches to the top of the trunk by using `attach()` as a child of the trunk cylinder. + +```openscad-example +include +l = 1500; +sc = 0.7; +cylinder(l=l, d1=l/5, d2=l/5*sc) { + attach(TOP) yrot( 30) cylinder(l=l*sc, d1=l/5*sc, d2=l/5*sc*sc); + attach(TOP) yrot(-30) cylinder(l=l*sc, d1=l/5*sc, d2=l/5*sc*sc); +} +``` + +### Replicate Branches + +Instead of attaching each branch individually, you can attach multiple branch copies at once. + +```openscad-example +include +l = 1500; +sc = 0.7; +cylinder(l=l, d1=l/5, d2=l/5*sc) + attach(TOP) + zrot_copies(n=2) // Make multiple rotated copies + yrot(30) cylinder(l=l*sc, d1=l/5*sc, d2=l/5*sc*sc); +``` + +### Make it a Module + +Lets make this into a module, for convenience. + +```openscad-example +include +module tree(l=1500, sc=0.7) + cylinder(l=l, d1=l/5, d2=l/5*sc) + attach(TOP) + zrot_copies(n=2) + yrot(30) cylinder(l=l*sc, d1=l/5*sc, d2=l/5*sc*sc); +tree(); +``` + +### Use Recursion + +Since branches look much like the main trunk, we can make it recursive. Don't forget the termination clause, or else it'll try to recurse forever! + +```openscad-example +include +module tree(l=1500, sc=0.7, depth=10) + cylinder(l=l, d1=l/5, d2=l/5*sc) + attach(TOP) + if (depth>0) // Important! + zrot_copies(n=2) + yrot(30) tree(depth=depth-1, l=l*sc, sc=sc); +tree(); +``` + +### Make it Not Flat + +A flat planar tree isn't what we want, so lets bush it out a bit by rotating each level 90 degrees. + +```openscad-example +include +module tree(l=1500, sc=0.7, depth=10) + cylinder(l=l, d1=l/5, d2=l/5*sc) + attach(TOP) + if (depth>0) + zrot(90) // Bush it out + zrot_copies(n=2) + yrot(30) tree(depth=depth-1, l=l*sc, sc=sc); +tree(); +``` + +### Adding Leaves + +Let's add leaves. They look much like squashed versions of the standard teardrop() module, so lets use that. + +```openscad-example +include +module tree(l=1500, sc=0.7, depth=10) + cylinder(l=l, d1=l/5, d2=l/5*sc) + attach(TOP) + if (depth>0) + zrot(90) + zrot_copies(n=2) + yrot(30) tree(depth=depth-1, l=l*sc, sc=sc); + else + yscale(0.67) + teardrop(d=l*3, l=1, anchor=BOT, spin=90); +tree(); +``` + +### Adding Color + +We can finish this off with some color. The `color()` module will force all it's children and +their descendants to the new color, even if they were colored before. The `recolor()` module, +however, will only color children and decendants that don't already have a color set by a more +nested `recolor()`. + +```openscad-example +include +module tree(l=1500, sc=0.7, depth=10) + recolor("lightgray") + cylinder(l=l, d1=l/5, d2=l/5*sc) + attach(TOP) + if (depth>0) + zrot(90) + zrot_copies(n=2) + yrot(30) + tree(depth=depth-1, l=l*sc, sc=sc); + else + recolor("springgreen") + yscale(0.67) + teardrop(d=l*3, l=1, anchor=BOT, spin=90); +tree(); +``` + diff --git a/version.scad b/version.scad index 1ed74dc..ce1456a 100644 --- a/version.scad +++ b/version.scad @@ -8,7 +8,7 @@ ////////////////////////////////////////////////////////////////////// -BOSL_VERSION = [2,0,209]; +BOSL_VERSION = [2,0,217]; // Section: BOSL Library Version Functions diff --git a/vnf.scad b/vnf.scad index d8e73bf..d949672 100644 --- a/vnf.scad +++ b/vnf.scad @@ -24,8 +24,17 @@ EMPTY_VNF = [[],[]]; // The standard empty VNF with no vertices or faces. // Function: is_vnf() -// Description: Returns true if the given value looks passingly like a VNF structure. -function is_vnf(x) = is_list(x) && len(x)==2 && is_list(x[0]) && is_list(x[1]) && (x[0]==[] || is_vector(x[0][0])) && (x[1]==[] || is_vector(x[1][0])); +// Usage: +// bool = is_vnf(x); +// Description: +// Returns true if the given value looks like a VNF structure. +function is_vnf(x) = + is_list(x) && + len(x)==2 && + is_list(x[0]) && + is_list(x[1]) && + (x[0]==[] || (len(x[0])>=3 && is_vector(x[0][0]))) && + (x[1]==[] || is_vector(x[1][0])); // Function: is_vnf_list() @@ -73,7 +82,7 @@ function vnf_quantize(vnf,q=pow(2,-12)) = // vnf4 = vnf_get_vertex(vnf3, p=[[1,3,2],[3,2,1]]); // Returns: [[1,2], [[[3,5,8],[3,2,1],[1,3,2]],[]]] function vnf_get_vertex(vnf=EMPTY_VNF, p) = is_path(p)? _vnf_get_vertices(vnf, p) : - assert(is_vnf(vnf)) + assert(is_list(vnf) && len(vnf)==2 && is_list(vnf[0]) && is_list(vnf[1]), "Argument vnf should contain a VNF structure.") assert(is_vector(p)) let( v = search([p], vnf[0])[0]