This commit is contained in:
RonaldoCMP 2020-08-27 11:51:10 +01:00
commit ab8a04fe82
11 changed files with 323 additions and 70 deletions

View file

@ -356,7 +356,7 @@ function bezier_segment_length(curve, start_u=0, end_u=1, max_deflect=0.01) =
// Function: fillet3pts()
// Usage:
// fillet3pts(p0, p1, p2, r);
// fillet3pts(p0, p1, p2, r|d);
// Description:
// Takes three points, defining two line segments, and works out the
// cubic (degree 3) bezier segment (and surrounding control points)
@ -368,7 +368,8 @@ function bezier_segment_length(curve, start_u=0, end_u=1, max_deflect=0.01) =
// p1 = The middle point.
// p2 = The ending point.
// r = The radius of the fillet/rounding.
// maxerr = Max amount bezier curve should diverge from actual radius curve. Default: 0.1
// d = The diameter of the fillet/rounding.
// maxerr = Max amount bezier curve should diverge from actual curve. Default: 0.1
// Example(2D):
// p0 = [40, 0];
// p1 = [0, 0];
@ -376,7 +377,8 @@ function bezier_segment_length(curve, start_u=0, end_u=1, max_deflect=0.01) =
// trace_polyline([p0,p1,p2], showpts=true, size=0.5, color="green");
// fbez = fillet3pts(p0,p1,p2, 10);
// trace_bezier(slice(fbez, 1, -2), size=1);
function fillet3pts(p0, p1, p2, r, maxerr=0.1, w=0.5, dw=0.25) = let(
function fillet3pts(p0, p1, p2, r, d, maxerr=0.1, w=0.5, dw=0.25) = let(
r = get_radius(r=r,d=d),
v0 = unit(p0-p1),
v1 = unit(p2-p1),
midv = unit((v0+v1)/2),
@ -391,8 +393,8 @@ function fillet3pts(p0, p1, p2, r, maxerr=0.1, w=0.5, dw=0.25) = let(
bp = bezier_points([tp0, cp0, cp1, tp1], 0.5),
tdist = norm(cp-bp)
) (abs(tdist-cpr) <= maxerr)? [tp0, tp0, cp0, cp1, tp1, tp1] :
(tdist<cpr)? fillet3pts(p0, p1, p2, r, maxerr=maxerr, w=w+dw, dw=dw/2) :
fillet3pts(p0, p1, p2, r, maxerr=maxerr, w=w-dw, dw=dw/2);
(tdist<cpr)? fillet3pts(p0, p1, p2, r=r, maxerr=maxerr, w=w+dw, dw=dw/2) :
fillet3pts(p0, p1, p2, r=r, maxerr=maxerr, w=w-dw, dw=dw/2);
@ -613,7 +615,7 @@ function fillet_path(pts, fillet, maxerr=0.1) = concat(
p1 = pts[p],
p0 = (pts[p-1]+p1)/2,
p2 = (pts[p+1]+p1)/2
) for (pt = fillet3pts(p0, p1, p2, fillet, maxerr=maxerr)) pt
) for (pt = fillet3pts(p0, p1, p2, r=fillet, maxerr=maxerr)) pt
],
[pts[len(pts)-1], pts[len(pts)-1]]
);

View file

@ -686,7 +686,7 @@ module rot_copies(rots=[], v=undef, cp=[0,0,0], n=undef, sa=0, offset=0, delta=[
// cp = Centerpoint to rotate around.
// n = Optional number of evenly distributed copies to be rotated around the ring.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from Y+, when facing the origin from X+. First unrotated copy is placed at that angle.
// r = Radius to move children back, away from cp, before rotating. Makes rings of copies.
// r = Radius to move children back (Y+), away from cp, before rotating. Makes rings of copies.
// subrot = If false, don't sub-rotate children as they are copied around the ring.
//
// Side Effects:
@ -743,7 +743,7 @@ module xrot_copies(rots=[], cp=[0,0,0], n=undef, sa=0, r=0, subrot=true)
// cp = Centerpoint to rotate around.
// n = Optional number of evenly distributed copies to be rotated around the ring.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X-, when facing the origin from Y+.
// r = Radius to move children left, away from cp, before rotating. Makes rings of copies.
// r = Radius to move children left (X-), away from cp, before rotating. Makes rings of copies.
// subrot = If false, don't sub-rotate children as they are copied around the ring.
//
// Side Effects:
@ -800,7 +800,7 @@ module yrot_copies(rots=[], cp=[0,0,0], n=undef, sa=0, r=0, subrot=true)
// cp = Centerpoint to rotate around. Default: [0,0,0]
// n = Optional number of evenly distributed copies to be rotated around the ring.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X+, when facing the origin from Z+. Default: 0
// r = Radius to move children right, away from cp, before rotating. Makes rings of copies. Default: 0
// r = Radius to move children right (X+), away from cp, before rotating. Makes rings of copies. Default: 0
// subrot = If false, don't sub-rotate children as they are copied around the ring. Default: true
//
// Side Effects:

View file

@ -368,8 +368,8 @@ module chamfer_hole_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false,
// Module: rounding_mask()
// Usage:
// rounding_mask(l|h, r)
// rounding_mask(l|h, r1, r2)
// rounding_mask(l|h, r|d)
// rounding_mask(l|h, r1|d1, r2|d2)
// Description:
// Creates a shape that can be used to round a vertical 90 degree edge.
// Difference it from the object to be rounded. The center of the mask
@ -379,6 +379,9 @@ module chamfer_hole_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false,
// r = Radius of the rounding.
// r1 = Bottom radius of rounding.
// r2 = Top radius of rounding.
// d = Diameter of the rounding.
// d1 = Bottom diameter of rounding.
// d2 = Top diameter of rounding.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
@ -409,11 +412,11 @@ module chamfer_hole_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false,
// rounding_mask(l=p.x, r=25, spin=45, orient=RIGHT);
// }
// }
module rounding_mask(l=undef, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0, orient=UP, h=undef)
module rounding_mask(l, r, r1, r2, d, d1, d2, anchor=CENTER, spin=0, orient=UP, h=undef)
{
l = first_defined([l, h, 1]);
r1 = get_radius(r1=r1, r=r, dflt=1);
r2 = get_radius(r1=r2, r=r, dflt=1);
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
sides = quantup(segs(max(r1,r2)),4);
attachable(anchor,spin,orient, size=[2*r1,2*r1,l], size2=[2*r2,2*r2]) {
if (r1<r2) {
@ -440,8 +443,8 @@ module rounding_mask(l=undef, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
// Module: rounding_mask_x()
// Usage:
// rounding_mask_x(l, r, [anchor])
// rounding_mask_x(l, r1, r2, [anchor])
// rounding_mask_x(l, r|d, [anchor])
// rounding_mask_x(l, r1|d1, r2|d2, [anchor])
// Description:
// Creates a shape that can be used to round a 90 degree edge oriented
// along the X axis. Difference it from the object to be rounded.
@ -452,6 +455,9 @@ module rounding_mask(l=undef, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
// r = Radius of the rounding.
// r1 = Left end radius of rounding.
// r2 = Right end radius of rounding.
// d = Diameter of the rounding.
// d1 = Left end diameter of rounding.
// d2 = Right end diameter of rounding.
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Example:
// difference() {
@ -463,10 +469,10 @@ module rounding_mask(l=undef, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
// cube(size=100, center=false);
// #rounding_mask_x(l=100, r1=10, r2=30, anchor=LEFT);
// }
module rounding_mask_x(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0)
module rounding_mask_x(l=1.0, r, r1, r2, d, d1, d2, anchor=CENTER, spin=0)
{
anchor = rot(p=anchor, from=RIGHT, to=TOP);
rounding_mask(l=l, r=r, r1=r1, r2=r2, anchor=anchor, spin=spin, orient=RIGHT) {
rounding_mask(l=l, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, anchor=anchor, spin=spin, orient=RIGHT) {
for (i=[0:1:$children-2]) children(i);
if ($children) children($children-1);
}
@ -475,8 +481,8 @@ module rounding_mask_x(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
// Module: rounding_mask_y()
// Usage:
// rounding_mask_y(l, r, [anchor])
// rounding_mask_y(l, r1, r2, [anchor])
// rounding_mask_y(l, r|d, [anchor])
// rounding_mask_y(l, r1|d1, r2|d2, [anchor])
// Description:
// Creates a shape that can be used to round a 90 degree edge oriented
// along the Y axis. Difference it from the object to be rounded.
@ -487,6 +493,9 @@ module rounding_mask_x(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
// r = Radius of the rounding.
// r1 = Front end radius of rounding.
// r2 = Back end radius of rounding.
// d = Diameter of the rounding.
// d1 = Front end diameter of rounding.
// d2 = Back end diameter of rounding.
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Example:
// difference() {
@ -498,10 +507,10 @@ module rounding_mask_x(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
// cube(size=100, center=false);
// right(100) #rounding_mask_y(l=100, r1=10, r2=30, anchor=FRONT);
// }
module rounding_mask_y(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0)
module rounding_mask_y(l=1.0, r, r1, r2, d, d1, d2, anchor=CENTER, spin=0)
{
anchor = rot(p=anchor, from=BACK, to=TOP);
rounding_mask(l=l, r=r, r1=r1, r2=r2, anchor=anchor, spin=spin, orient=BACK) {
rounding_mask(l=l, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, anchor=anchor, spin=spin, orient=BACK) {
for (i=[0:1:$children-2]) children(i);
if ($children) children($children-1);
}
@ -510,8 +519,8 @@ module rounding_mask_y(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
// Module: rounding_mask_z()
// Usage:
// rounding_mask_z(l, r, [anchor])
// rounding_mask_z(l, r1, r2, [anchor])
// rounding_mask_z(l, r|d, [anchor])
// rounding_mask_z(l, r1|d1, r2|d2, [anchor])
// Description:
// Creates a shape that can be used to round a 90 degree edge oriented
// along the Z axis. Difference it from the object to be rounded.
@ -522,6 +531,9 @@ module rounding_mask_y(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
// r = Radius of the rounding.
// r1 = Bottom radius of rounding.
// r2 = Top radius of rounding.
// d = Diameter of the rounding.
// d1 = Bottom diameter of rounding.
// d2 = Top diameter of rounding.
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Example:
// difference() {
@ -533,9 +545,9 @@ module rounding_mask_y(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
// cube(size=100, center=false);
// #rounding_mask_z(l=100, r1=10, r2=30, anchor=BOTTOM);
// }
module rounding_mask_z(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0)
module rounding_mask_z(l=1.0, r, r1, r2, d, d1, d2, anchor=CENTER, spin=0)
{
rounding_mask(l=l, r=r, r1=r1, r2=r2, anchor=anchor, spin=spin, orient=UP) {
rounding_mask(l=l, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, anchor=anchor, spin=spin, orient=UP) {
for (i=[0:1:$children-2]) children(i);
if ($children) children($children-1);
}
@ -544,11 +556,12 @@ module rounding_mask_z(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
// Module: rounding()
// Usage:
// rounding(r, size, [edges]) ...
// rounding(r|d, size, [edges]) ...
// Description:
// Rounds the edges of a cuboid region containing the given children.
// Arguments:
// r = Radius of the rounding. (Default: 1)
// d = Diameter of the rounding. (Default: 1)
// size = The size of the rectangular cuboid we want to chamfer.
// edges = Edges to round. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: All edges.
// except_edges = Edges to explicitly NOT round. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: No edges.
@ -560,8 +573,9 @@ module rounding_mask_z(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
// rounding(r=10, size=[50,50,75], edges=[TOP,FRONT+RIGHT], except_edges=TOP+LEFT, $fn=24) {
// cube(size=[50,50,75], center=true);
// }
module rounding(r=1, size=[1,1,1], edges=EDGES_ALL, except_edges=[])
module rounding(r, size=[1,1,1], d, edges=EDGES_ALL, except_edges=[])
{
r = get_radius(r=r, d=d, dflt=1);
difference() {
children();
difference() {
@ -574,8 +588,8 @@ module rounding(r=1, size=[1,1,1], edges=EDGES_ALL, except_edges=[])
// Module: rounding_angled_edge_mask()
// Usage:
// rounding_angled_edge_mask(h, r, [ang]);
// rounding_angled_edge_mask(h, r1, r2, [ang]);
// rounding_angled_edge_mask(h, r|d, [ang]);
// rounding_angled_edge_mask(h, r1|d1, r2|d2, [ang]);
// Description:
// Creates a vertical mask that can be used to round the edge where two face meet, at any arbitrary
// angle. Difference it from the object to be rounded. The center of the mask should align exactly
@ -585,6 +599,9 @@ module rounding(r=1, size=[1,1,1], edges=EDGES_ALL, except_edges=[])
// r = Radius of the rounding.
// r1 = Bottom radius of rounding.
// r2 = Top radius of rounding.
// d = Diameter of the rounding.
// d1 = Bottom diameter of rounding.
// d2 = Top diameter of rounding.
// ang = Angle that the planes meet at.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
@ -599,7 +616,7 @@ module rounding(r=1, size=[1,1,1], edges=EDGES_ALL, except_edges=[])
// angle_pie_mask(ang=70, h=50, d=100);
// #rounding_angled_edge_mask(h=51, r1=10, r2=25, ang=70, $fn=32);
// }
module rounding_angled_edge_mask(h=1.0, r=undef, r1=undef, r2=undef, ang=90, anchor=CENTER, spin=0, orient=UP)
module rounding_angled_edge_mask(h=1.0, r, r1, r2, d, d1, d2, ang=90, anchor=CENTER, spin=0, orient=UP)
{
function _mask_shape(r) = [
for (i = [0:1:n]) let (a=90+ang+i*sweep/n) [r*cos(a)+x, r*sin(a)+r],
@ -609,8 +626,8 @@ module rounding_angled_edge_mask(h=1.0, r=undef, r1=undef, r2=undef, ang=90, anc
];
sweep = 180-ang;
r1 = get_radius(r1=r1, r=r, dflt=1);
r2 = get_radius(r1=r2, r=r, dflt=1);
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
n = ceil(segs(max(r1,r2))*sweep/360);
x = sin(90-(ang/2))/sin(ang/2) * (r1<r2? r2 : r1);
if(r1<r2) {
@ -635,13 +652,14 @@ module rounding_angled_edge_mask(h=1.0, r=undef, r1=undef, r2=undef, ang=90, anc
// Module: rounding_angled_corner_mask()
// Usage:
// rounding_angled_corner_mask(r, ang);
// rounding_angled_corner_mask(r|d, ang);
// Description:
// Creates a shape that can be used to round the corner of an angle.
// Difference it from the object to be rounded. The center of the mask
// object should align exactly with the point of the corner to be rounded.
// Arguments:
// r = Radius of the rounding.
// d = Diameter of the rounding.
// ang = Angle between planes that you need to round the corner of.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
@ -656,8 +674,9 @@ module rounding_angled_edge_mask(h=1.0, r=undef, r1=undef, r2=undef, ang=90, anc
// }
// rounding_angled_edge_mask(h=51, r=20, ang=ang);
// }
module rounding_angled_corner_mask(r=1.0, ang=90, anchor=CENTER, spin=0, orient=UP)
module rounding_angled_corner_mask(r, ang=90, d, anchor=CENTER, spin=0, orient=UP)
{
r = get_radius(r=r, d=d, dflt=1);
dx = r / tan(ang/2);
dx2 = dx / cos(ang/2) + 1;
fn = quantup(segs(r), 4);
@ -683,13 +702,14 @@ module rounding_angled_corner_mask(r=1.0, ang=90, anchor=CENTER, spin=0, orient=
// Module: rounding_corner_mask()
// Usage:
// rounding_corner_mask(r, [anchor]);
// rounding_corner_mask(r|d, [anchor]);
// Description:
// Creates a shape that you can use to round 90 degree corners.
// Difference it from the object to be rounded. The center of the mask
// object should align exactly with the corner to be rounded.
// Arguments:
// r = Radius of corner rounding.
// d = Diameter of corner rounding.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
@ -703,8 +723,9 @@ module rounding_angled_corner_mask(r=1.0, ang=90, anchor=CENTER, spin=0, orient=
// translate([15, 25, 0]) rounding_mask_z(l=81, r=15);
// translate([15, 25, 40]) #rounding_corner_mask(r=15);
// }
module rounding_corner_mask(r=1.0, anchor=CENTER, spin=0, orient=UP)
module rounding_corner_mask(r, d, anchor=CENTER, spin=0, orient=UP)
{
r = get_radius(r=r, d=d, dflt=1);
attachable(anchor,spin,orient, size=[2,2,2]*r) {
difference() {
cube(size=r*2, center=true);
@ -719,7 +740,7 @@ module rounding_corner_mask(r=1.0, anchor=CENTER, spin=0, orient=UP)
// Module: rounding_cylinder_mask()
// Usage:
// rounding_cylinder_mask(r, rounding);
// rounding_cylinder_mask(r|d, rounding);
// Description:
// Create a mask that can be used to round the end of a cylinder.
// Difference it from the cylinder to be rounded. The center of the
@ -727,6 +748,7 @@ module rounding_corner_mask(r=1.0, anchor=CENTER, spin=0, orient=UP)
// cylinder to be rounded.
// Arguments:
// r = Radius of cylinder. (Default: 1.0)
// d = Diameter of cylinder. (Default: 1.0)
// rounding = Radius of the edge rounding. (Default: 0.25)
// Example:
// difference() {
@ -738,8 +760,9 @@ module rounding_corner_mask(r=1.0, anchor=CENTER, spin=0, orient=UP)
// cylinder(r=50, h=50, center=false);
// up(50) rounding_cylinder_mask(r=50, rounding=10);
// }
module rounding_cylinder_mask(r=1.0, rounding=0.25)
module rounding_cylinder_mask(r, rounding=0.25, d)
{
r = get_radius(r=r, d=d, dflt=1);
cylinder_mask(l=rounding*3, r=r, rounding2=rounding, excess=rounding, ends_only=true, anchor=TOP);
}
@ -775,7 +798,7 @@ module rounding_cylinder_mask(r=1.0, rounding=0.25)
// }
// Example:
// rounding_hole_mask(r=40, rounding=20, $fa=2, $fs=2);
module rounding_hole_mask(r=undef, d=undef, rounding=0.25, excess=0.1, anchor=CENTER, spin=0, orient=UP)
module rounding_hole_mask(r, rounding=0.25, excess=0.1, d, anchor=CENTER, spin=0, orient=UP)
{
r = get_radius(r=r, d=d, dflt=1);
attachable(anchor,spin,orient, r=r+rounding, l=2*rounding) {
@ -813,7 +836,7 @@ module rounding_hole_mask(r=undef, d=undef, rounding=0.25, excess=0.1, anchor=CE
// corner_profile(BOT,r=10)
// mask2d_teardrop(r=10, angle=40);
// }
module teardrop_corner_mask(r, d, angle, excess=0.1, anchor=CENTER, spin=0, orient=UP) {
module teardrop_corner_mask(r, angle, excess=0.1, d, anchor=CENTER, spin=0, orient=UP) {
assert(is_num(angle));
assert(is_num(excess));
assert(angle>0 && angle<90);

119
math.scad
View file

@ -864,6 +864,123 @@ function is_matrix(A,m,n,square=false) =
// Section: Comparisons and Logic
// Function: is_zero()
// Usage:
// is_zero(x);
// Description:
// Returns true if the number passed to it is approximately zero, to within `eps`.
// If passed a list, recursively checks if all items in the list are approximately zero.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// eps = The maximum allowed variance. Default: `EPSILON` (1e-9)
// Example:
// is_zero(0); // Returns: true.
// is_zero(1e-3); // Returns: false.
// is_zero([0,0,0]); // Returns: true.
// is_zero([0,0,1e-3]); // Returns: false.
function is_zero(x, eps=EPSILON) =
is_list(x)? (x != [] && [for (xx=x) if(!is_zero(xx,eps=eps)) 1] == []) :
is_num(x)? approx(x,eps) :
false;
// Function: is_positive()
// Usage:
// is_positive(x);
// Description:
// Returns true if the number passed to it is greater than zero.
// If passed a list, recursively checks if all items in the list are positive.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// Example:
// is_positive(-2); // Returns: false.
// is_positive(0); // Returns: false.
// is_positive(2); // Returns: true.
// is_positive([0,0,0]); // Returns: false.
// is_positive([0,1,2]); // Returns: false.
// is_positive([3,1,2]); // Returns: true.
// is_positive([3,-1,2]); // Returns: false.
function is_positive(x) =
is_list(x)? (x != [] && [for (xx=x) if(!is_positive(xx)) 1] == []) :
is_num(x)? x>0 :
false;
// Function: is_negative()
// Usage:
// is_negative(x);
// Description:
// Returns true if the number passed to it is less than zero.
// If passed a list, recursively checks if all items in the list are negative.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// Example:
// is_negative(-2); // Returns: true.
// is_negative(0); // Returns: false.
// is_negative(2); // Returns: false.
// is_negative([0,0,0]); // Returns: false.
// is_negative([0,1,2]); // Returns: false.
// is_negative([3,1,2]); // Returns: false.
// is_negative([3,-1,2]); // Returns: false.
// is_negative([-3,-1,-2]); // Returns: true.
function is_negative(x) =
is_list(x)? (x != [] && [for (xx=x) if(!is_negative(xx)) 1] == []) :
is_num(x)? x<0 :
false;
// Function: is_nonpositive()
// Usage:
// is_nonpositive(x);
// Description:
// Returns true if the number passed to it is less than or equal to zero.
// If passed a list, recursively checks if all items in the list are nonpositive.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// Example:
// is_nonpositive(-2); // Returns: true.
// is_nonpositive(0); // Returns: true.
// is_nonpositive(2); // Returns: false.
// is_nonpositive([0,0,0]); // Returns: true.
// is_nonpositive([0,1,2]); // Returns: false.
// is_nonpositive([3,1,2]); // Returns: false.
// is_nonpositive([3,-1,2]); // Returns: false.
// is_nonpositive([-3,-1,-2]); // Returns: true.
function is_nonpositive(x) =
is_list(x)? (x != [] && [for (xx=x) if(!is_nonpositive(xx)) 1] == []) :
is_num(x)? x<=0 :
false;
// Function: is_nonnegative()
// Usage:
// is_nonnegative(x);
// Description:
// Returns true if the number passed to it is greater than or equal to zero.
// If passed a list, recursively checks if all items in the list are nonnegative.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// Example:
// is_nonnegative(-2); // Returns: false.
// is_nonnegative(0); // Returns: true.
// is_nonnegative(2); // Returns: true.
// is_nonnegative([0,0,0]); // Returns: true.
// is_nonnegative([0,1,2]); // Returns: true.
// is_nonnegative([0,-1,-2]); // Returns: false.
// is_nonnegative([3,1,2]); // Returns: true.
// is_nonnegative([3,-1,2]); // Returns: false.
// is_nonnegative([-3,-1,-2]); // Returns: false.
function is_nonnegative(x) =
is_list(x)? (x != [] && [for (xx=x) if(!is_nonnegative(xx)) 1] == []) :
is_num(x)? x>=0 :
false;
// Function: approx()
// Usage:
// approx(a,b,[eps])
@ -1382,4 +1499,4 @@ function real_roots(p,eps=undef,tol=1e-14) =
? [for(z=roots) if (abs(z.y)/(1+norm(z))<eps) z.x]
: [for(i=idx(roots)) if (abs(roots[i].y)<=err[i]) roots[i].x];
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -321,7 +321,7 @@ module chain_hull()
// Usage:
// cylindrical_extrude(size, ir|id, or|od, [convexity]) ...
// Description:
// Cylindrically extrudes all 2D children, curved around a cylidrical shape.
// Extrudes all 2D children outwards, curved around a cylindrical shape.
// Arguments:
// or = The outer radius to extrude to.
// od = The outer diameter to extrude to.

View file

@ -418,7 +418,7 @@ function path_torsion(path, closed=false) =
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]`
// Example(3D):
// trace_polyline(path3d_spiral(turns=2.5, h=100, n=24, r=50), N=1, showpts=true);
function path3d_spiral(turns=3, h=100, n=12, r=undef, d=undef, cp=[0,0], scale=[1,1]) = let(
function path3d_spiral(turns=3, h=100, n=12, r, d, cp=[0,0], scale=[1,1]) = let(
rr=get_radius(r=r, d=d, dflt=100),
cnt=floor(turns*n),
dz=h/cnt
@ -774,15 +774,19 @@ function assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
// Module: modulated_circle()
// Usage:
// modulated_circle(r|d, sines);
// Description:
// Creates a 2D polygon circle, modulated by one or more superimposed sine waves.
// Arguments:
// r = radius of the base circle.
// r = Radius of the base circle. Default: 40
// d = Diameter of the base circle.
// sines = array of [amplitude, frequency] pairs, where the frequency is the number of times the cycle repeats around the circle.
// Example(2D):
// modulated_circle(r=40, sines=[[3, 11], [1, 31]], $fn=6);
module modulated_circle(r=40, sines=[10])
module modulated_circle(r, sines=[10], d)
{
r = get_radius(r=r, d=d, dflt=40);
freqs = len(sines)>0? [for (i=sines) i[1]] : [5];
points = [
for (a = [0 : (360/segs(r)/max(freqs)) : 360])
@ -829,7 +833,8 @@ module extrude_from_to(pt1, pt2, convexity=undef, twist=undef, scale=undef, slic
// Arguments:
// polyline = Array of points of a polyline path, to be extruded.
// h = height of the spiral to extrude along.
// r = radius of the spiral to extrude along.
// r = Radius of the spiral to extrude along. Default: 50
// d = Diameter of the spiral to extrude along.
// twist = number of degrees of rotation to spiral up along height.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
@ -838,7 +843,8 @@ module extrude_from_to(pt1, pt2, convexity=undef, twist=undef, scale=undef, slic
// Example:
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36);
module spiral_sweep(polyline, h, r, twist=360, center, anchor, spin=0, orient=UP) {
module spiral_sweep(polyline, h, r, twist=360, center, d, anchor, spin=0, orient=UP) {
r = get_radius(r=r, d=d, dflt=50);
polyline = path3d(polyline);
pline_count = len(polyline);
steps = ceil(segs(r)*(twist/360));

View file

@ -730,9 +730,10 @@ function stellate_faces(scalefactor,stellate,vertices,faces_normals) =
) [newfaces, normals, allpts];
function trapezohedron(faces, r, side, longside, h) =
function trapezohedron(faces, r, side, longside, h, d) =
assert(faces%2==0, "Number of faces must be even")
let(
r = get_radius(r=r, d=d, dflt=1),
N = faces/2,
parmcount = num_defined([r,side,longside,h])
)

View file

@ -1498,13 +1498,14 @@ module pie_slice(
// Center this part along the concave edge to be chamfered and union it in.
//
// Usage:
// interior_fillet(l, r, [ang], [overlap]);
// interior_fillet(l, r|d, [ang], [overlap]);
//
// Arguments:
// l = length of edge to fillet.
// r = radius of fillet.
// ang = angle between faces to fillet.
// overlap = overlap size for unioning with faces.
// l = Length of edge to fillet.
// r = Radius of fillet.
// d = Diameter of fillet.
// ang = Angle between faces to fillet.
// overlap = Overlap size for unioning with faces.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `FRONT+LEFT`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
@ -1526,7 +1527,8 @@ module pie_slice(
// position(BOT+FRONT)
// interior_fillet(l=50, r=10, spin=180, orient=RIGHT);
// }
module interior_fillet(l=1.0, r=1.0, ang=90, overlap=0.01, anchor=FRONT+LEFT, spin=0, orient=UP) {
module interior_fillet(l=1.0, r, ang=90, overlap=0.01, d, anchor=FRONT+LEFT, spin=0, orient=UP) {
r = get_radius(r=r, d=d, dflt=1);
dy = r/tan(ang/2);
steps = ceil(segs(r)*ang/360);
step = ang/steps;

View file

@ -100,6 +100,106 @@ module test_is_matrix() {
test_is_matrix();
module test_is_zero() {
assert(is_zero(0));
assert(is_zero([0,0,0]));
assert(is_zero([[0,0,0],[0,0]]));
assert(is_zero([EPSILON/2,EPSILON/2,EPSILON/2]));
assert(!is_zero(1e-3));
assert(!is_zero([0,0,1e-3]));
assert(!is_zero([EPSILON*10,0,0]));
assert(!is_zero([0,EPSILON*10,0]));
assert(!is_zero([0,0,EPSILON*10]));
assert(!is_zero(true));
assert(!is_zero(false));
assert(!is_zero(INF));
assert(!is_zero(-INF));
assert(!is_zero(NAN));
assert(!is_zero("foo"));
assert(!is_zero([]));
assert(!is_zero([0:1:2]));
}
test_is_zero();
module test_is_positive() {
assert(!is_positive(-2));
assert(!is_positive(0));
assert(is_positive(2));
assert(!is_positive([0,0,0]));
assert(!is_positive([0,1,2]));
assert(is_positive([3,1,2]));
assert(!is_positive([3,-1,2]));
assert(!is_positive([]));
assert(!is_positive(true));
assert(!is_positive(false));
assert(!is_positive("foo"));
assert(!is_positive([0:1:2]));
}
test_is_positive();
module test_is_negative() {
assert(is_negative(-2));
assert(!is_negative(0));
assert(!is_negative(2));
assert(!is_negative([0,0,0]));
assert(!is_negative([0,1,2]));
assert(!is_negative([3,1,2]));
assert(!is_negative([3,-1,2]));
assert(is_negative([-3,-1,-2]));
assert(!is_negative([-3,1,-2]));
assert(is_negative([[-5,-7],[-3,-1,-2]]));
assert(!is_negative([[-5,-7],[-3,1,-2]]));
assert(!is_negative([]));
assert(!is_negative(true));
assert(!is_negative(false));
assert(!is_negative("foo"));
assert(!is_negative([0:1:2]));
}
test_is_negative();
module test_is_nonpositive() {
assert(is_nonpositive(-2));
assert(is_nonpositive(0));
assert(!is_nonpositive(2));
assert(is_nonpositive([0,0,0]));
assert(!is_nonpositive([0,1,2]));
assert(is_nonpositive([0,-1,-2]));
assert(!is_nonpositive([3,1,2]));
assert(!is_nonpositive([3,-1,2]));
assert(!is_nonpositive([]));
assert(!is_nonpositive(true));
assert(!is_nonpositive(false));
assert(!is_nonpositive("foo"));
assert(!is_nonpositive([0:1:2]));
}
test_is_nonpositive();
module test_is_nonnegative() {
assert(!is_nonnegative(-2));
assert(is_nonnegative(0));
assert(is_nonnegative(2));
assert(is_nonnegative([0,0,0]));
assert(is_nonnegative([0,1,2]));
assert(is_nonnegative([3,1,2]));
assert(!is_nonnegative([3,-1,2]));
assert(!is_nonnegative([-3,-1,-2]));
assert(!is_nonnegative([[-5,-7],[-3,-1,-2]]));
assert(!is_nonnegative([[-5,-7],[-3,1,-2]]));
assert(!is_nonnegative([[5,7],[3,-1,2]]));
assert(is_nonnegative([[5,7],[3,1,2]]));
assert(!is_nonnegative([]));
assert(!is_nonnegative(true));
assert(!is_nonnegative(false));
assert(!is_nonnegative("foo"));
assert(!is_nonnegative([0:1:2]));
}
test_is_nonnegative();
module test_approx() {
assert_equal(approx(PI, 3.141592653589793236), true);
assert_equal(approx(PI, 3.1415926), false);
@ -924,4 +1024,4 @@ module test_poly_add(){
}
test_poly_add();
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -306,11 +306,11 @@ function up(z=0,p=undef) = move([0,0,z],p=p);
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix. Requires that `a` is a finite scalar.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees.
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees. If `planar` is true and `p` is not given, then `a` must be a finite scalar. Default: `0`
// v = vector for the axis of rotation. Default: [0,0,1] or UP
// cp = centerpoint to rotate around. Default: [0,0,0]
// from = Starting vector for vector-based rotations.
@ -343,16 +343,21 @@ module rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false)
function rot(a=0, v, cp, from, to, reverse=false, planar=false, p, _m) =
assert(is_undef(from)==is_undef(to), "from and to must be specified together.")
assert(is_undef(from) || is_vector(from, zero=false), "'from' must be a non-zero vector.")
assert(is_undef(to) || is_vector(to, zero=false), "'to' must be a non-zero vector.")
assert(is_undef(v) || is_vector(v, zero=false), "'v' must be a non-zero vector.")
assert(is_undef(cp) || is_vector(cp), "'cp' must be a vector.")
assert(is_finite(a) || is_vector(a), "'a' must be a finite scalar or a vector.")
assert(is_bool(reverse))
assert(is_bool(planar))
is_undef(p)? (
planar? let(
check = assert(is_num(a)),
cp = is_undef(cp)? cp : point2d(cp),
m1 = is_undef(from)? affine2d_zrot(a) :
assert(is_vector(from))
assert(!approx(norm(from),0))
assert(approx(point3d(from).z, 0))
assert(is_vector(to))
assert(!approx(norm(to),0))
assert(approx(point3d(to).z, 0))
assert(a==0, "'from' and 'to' cannot be used with 'a' when 'planar' is true.")
assert(approx(point3d(from).z, 0), "'from' must be a 2D vector when 'planar' is true.")
assert(approx(point3d(to).z, 0), "'to' must be a 2D vector when 'planar' is true.")
affine2d_zrot(
vang(point2d(to)) -
vang(point2d(from))
@ -364,13 +369,10 @@ function rot(a=0, v, cp, from, to, reverse=false, planar=false, p, _m) =
to = is_undef(to)? undef : point3d(to),
cp = is_undef(cp)? undef : point3d(cp),
m1 = !is_undef(from)? (
assert(is_vector(from))
assert(!approx(norm(from),0))
assert(is_vector(to))
assert(!approx(norm(to),0))
assert(is_num(a))
affine3d_rot_from_to(from,to) * affine3d_zrot(a)
) :
!is_undef(v)? affine3d_rot_by_axis(v,a) :
!is_undef(v)? assert(is_num(a)) affine3d_rot_by_axis(v,a) :
is_num(a)? affine3d_zrot(a) :
affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x),
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),

View file

@ -8,7 +8,7 @@
//////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,407];
BOSL_VERSION = [2,0,410];
// Section: BOSL Library Version Functions