Merge pull request #1179 from BelfrySCAD/revarbat_dev

SynTags for attachments.scad to geometry.scad
This commit is contained in:
Revar Desmera 2023-05-27 02:20:18 -07:00 committed by GitHub
commit af79314a08
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 304 additions and 193 deletions

View file

@ -464,6 +464,7 @@ _ANCHOR_TYPES = ["intersect","hull"];
// Module: position()
// Synopsis: Attaches children to a parent object at an anchor point.
// SynTags: Trans
// Topics: Attachments
// See Also: attachable(), attach(), orient()
// Usage:
@ -500,6 +501,7 @@ module position(from)
// Module: orient()
// Synopsis: Orients children's tops in the directon of the specified anchor.
// SynTags: Trans
// Topics: Attachments
// See Also: attachable(), attach(), orient()
// Usage:
@ -553,6 +555,7 @@ module orient(anchor, spin) {
// Module: attach()
// Synopsis: Attaches children to a parent object at an anchor point and orientation.
// SynTags: Trans
// Topics: Attachments
// See Also: attachable(), position(), face_profile(), edge_profile(), corner_profile()
// Usage:
@ -1380,6 +1383,7 @@ module show_int(tags)
// Module: face_mask()
// Synopsis: Ataches a 3d mask shape to the given faces of the parent.
// SynTags: Trans
// Topics: Attachments, Masking
// See Also: attachable(), position(), attach(), edge_mask(), corner_mask(), face_profile(), edge_profile(), corner_profile()
// Usage:
@ -1423,6 +1427,7 @@ module face_mask(faces=[LEFT,RIGHT,FRONT,BACK,BOT,TOP]) {
// Module: edge_mask()
// Synopsis: Attaches a 3D mask shape to the given edges of the parent.
// SynTags: Trans
// Topics: Attachments, Masking
// See Also: attachable(), position(), attach(), face_mask(), corner_mask(), face_profile(), edge_profile(), corner_profile()
// Usage:
@ -1487,6 +1492,7 @@ module edge_mask(edges=EDGES_ALL, except=[]) {
// Module: corner_mask()
// Synopsis: Attaches a 3d mask shape to the given corners of the parent.
// SynTags: Trans
// Topics: Attachments, Masking
// See Also: attachable(), position(), attach(), face_mask(), edge_mask(), face_profile(), edge_profile(), corner_profile()
// Usage:
@ -1537,6 +1543,7 @@ module corner_mask(corners=CORNERS_ALL, except=[]) {
// Module: face_profile()
// Synopsis: Extrudes a 2D edge profile into a mask for all edges and corners of the given faces on the parent.
// SynTags: Geom
// Topics: Attachments, Masking
// See Also: attachable(), position(), attach(), edge_profile(), corner_profile(), face_mask(), edge_mask(), corner_mask()
// Usage:
@ -1576,6 +1583,7 @@ module face_profile(faces=[], r, d, excess=0.01, convexity=10) {
// Module: edge_profile()
// Synopsis: Extrudes a 2d edge profile into a mask on the given edges of the parent.
// SynTags: Geom
// Topics: Attachments, Masking
// See Also: attachable(), position(), attach(), face_profile(), corner_profile(), edge_mask(), face_mask(), corner_mask()
// Usage:
@ -1640,6 +1648,7 @@ module edge_profile(edges=EDGES_ALL, except=[], excess=0.01, convexity=10) {
// Module: corner_profile()
// Synopsis: Rotationally extrudes a 2d edge profile into corner mask on the given corners of the parent.
// SynTags: Geom
// Topics: Attachments, Masking
// See Also: attachable(), position(), attach(), face_profile(), edge_profile(), corner_mask(), face_mask(), edge_mask()
// Usage:
@ -2024,6 +2033,7 @@ module attachable(
// Function: reorient()
// Synopsis: Calculates the transformation matrix needed to reorient an object.
// SynTags: Trans, Path, VNF
// Topics: Attachments
// See Also: reorient(), attachable()
// Usage: Square/Trapezoid Geometry
@ -2040,25 +2050,25 @@ module attachable(
// pts = reorient(anchor, spin, [orient], two_d=true, region=, [extent=], p=, ...);
// Usage: Cubical/Prismoidal Geometry
// mat = reorient(anchor, spin, [orient], size=, [size2=], [shift=], ...);
// pts = reorient(anchor, spin, [orient], size=, [size2=], [shift=], p=, ...);
// vnf = reorient(anchor, spin, [orient], size=, [size2=], [shift=], p=, ...);
// Usage: Cylindrical Geometry
// mat = reorient(anchor, spin, [orient], r=|d=, l=, [axis=], ...);
// pts = reorient(anchor, spin, [orient], r=|d=, l=, [axis=], p=, ...);
// vnf = reorient(anchor, spin, [orient], r=|d=, l=, [axis=], p=, ...);
// Usage: Conical Geometry
// mat = reorient(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], ...);
// pts = reorient(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], p=, ...);
// vnf = reorient(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], p=, ...);
// Usage: Spheroid/Ovoid Geometry
// mat = reorient(anchor, spin, [orient], r|d=, ...);
// pts = reorient(anchor, spin, [orient], r|d=, p=, ...);
// vnf = reorient(anchor, spin, [orient], r|d=, p=, ...);
// Usage: Extruded Path/Polygon Geometry
// mat = reorient(anchor, spin, [orient], path=, l=|h=, [extent=], ...);
// pts = reorient(anchor, spin, [orient], path=, l=|h=, [extent=], p=, ...);
// vnf = reorient(anchor, spin, [orient], path=, l=|h=, [extent=], p=, ...);
// Usage: Extruded Region Geometry
// mat = reorient(anchor, spin, [orient], region=, l=|h=, [extent=], ...);
// pts = reorient(anchor, spin, [orient], region=, l=|h=, [extent=], p=, ...);
// vnf = reorient(anchor, spin, [orient], region=, l=|h=, [extent=], p=, ...);
// Usage: VNF Geometry
// mat = reorient(anchor, spin, [orient], vnf, [extent], ...);
// pts = reorient(anchor, spin, [orient], vnf, [extent], p=, ...);
// vnf = reorient(anchor, spin, [orient], vnf, [extent], p=, ...);
//
// Description:
// Given anchor, spin, orient, and general geometry info for a managed volume, this calculates

View file

@ -241,7 +241,7 @@ function are_ends_equal(list, eps=EPSILON) =
// Usage:
// bool = is_increasing(list, [strict]);
// Description:
// Returns true if the list is (non-strictly) increasing, or strictly increasing if strict is set to true.
// Returns true if the list is (non-strictly) increasing, or strictly increasing if `strict=true`.
// The list can be a list of any items that OpenSCAD can compare, or it can be a string which will be
// evaluated character by character.
// Arguments:
@ -266,7 +266,7 @@ function is_increasing(list,strict=false) =
// Usage:
// bool = is_decreasing(list, [strict]);
// Description:
// Returns true if the list is (non-strictly) decreasing, or strictly decreasing if strict is set to true.
// Returns true if the list is (non-strictly) decreasing, or strictly decreasing if `strict=true`.
// The list can be a list of any items that OpenSCAD can compare, or it can be a string which will be
// evaluated character by character.
// Arguments:
@ -532,7 +532,7 @@ function close_path(list,eps=EPSILON) =
list_wrap(list,eps);
// Function: list_unwrap()
// Synopsis: Removes the last item of a list if it's first and last values are equal.
// Synopsis: Removes the last item of a list if its first and last values are equal.
// Topics: List Handling, Paths
// See Also: list_wrap(), deduplicate()
// Usage:

View file

@ -130,6 +130,7 @@ INCH = 25.4;
// Constant: IDENT
// Synopsis: A constant containing the 3D identity transformation matrix.
// SynTags: Mat
// Topics: Constants, Affine, Matrices, Transforms
// See Also: ident()
// Description: Identity transformation matrix for three-dimensional transforms. Equal to `ident(4)`.

View file

@ -12,11 +12,11 @@
// Section: Coordinate Manipulation
// Function: point2d()
// Usage:
// pt = point2d(p, [fill]);
// Synopsis: Convert a vector to 2D.
// Topics: Coordinates, Points
// See Also: path2d(), point3d(), path3d()
// Synopsis: Convert a vector to 2d.
// Usage:
// pt = point2d(p, [fill]);
// Description:
// Returns a 2D vector/point from a 2D or 3D vector. If given a 3D point, removes the Z coordinate.
// Arguments:
@ -26,11 +26,12 @@ function point2d(p, fill=0) = assert(is_list(p)) [for (i=[0:1]) (p[i]==undef)? f
// Function: path2d()
// Usage:
// pts = path2d(points);
// Synopsis: Convert a path to 2D.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: point2d(), point3d(), path3d()
// Synopsis: Convert a path to 2d.
// Usage:
// pts = path2d(points);
// Description:
// Returns a list of 2D vectors/points from a list of 2D, 3D or higher dimensional vectors/points.
// Removes the extra coordinates from higher dimensional points. The input must be a path, where
@ -45,11 +46,11 @@ function path2d(points) =
// Function: point3d()
// Usage:
// pt = point3d(p, [fill]);
// Synopsis: Convert a vector to 3D.
// Topics: Coordinates, Points
// See Also: path2d(), point2d(), path3d()
// Synopsis: Convert a vector to 3d.
// Usage:
// pt = point3d(p, [fill]);
// Description:
// Returns a 3D vector/point from a 2D or 3D vector.
// Arguments:
@ -61,11 +62,12 @@ function point3d(p, fill=0) =
// Function: path3d()
// Synopsis: Convert a path to 3D.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: point2d(), path2d(), point3d()
// Usage:
// pts = path3d(points, [fill]);
// Topics: Coordinates, Points, Paths
// Synopsis: Convert a path to 3d.
// See Also: point2d(), path2d(), point3d()
// Description:
// Returns a list of 3D vectors/points from a list of 2D or higher dimensional vectors/points
// by removing extra coordinates or adding the z coordinate.
@ -86,11 +88,11 @@ function path3d(points, fill=0) =
// Function: point4d()
// Synopsis: Convert a vector to 4d.
// Topics: Coordinates, Points
// See Also: point2d(), path2d(), point3d(), path3d(), path4d()
// Usage:
// pt = point4d(p, [fill]);
// Topics: Coordinates, Points
// Synopsis: Convert a vector to 4d.
// See Also: point2d(), path2d(), point3d(), path3d(), path4d()
// Description:
// Returns a 4D vector/point from a 2D or 3D vector.
// Arguments:
@ -101,11 +103,12 @@ function point4d(p, fill=0) = assert(is_list(p))
// Function: path4d()
// Usage:
// pt = path4d(points, [fill]);
// Synopsis: Convert a path to 4d.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: point2d(), path2d(), point3d(), path3d(), point4d()
// Synopsis: Convert a path to 4d.
// Usage:
// pt = path4d(points, [fill]);
// Description:
// Returns a list of 4D vectors/points from a list of 2D or 3D vectors/points.
// Arguments:
@ -134,13 +137,14 @@ function path4d(points, fill=0) =
// Section: Coordinate Systems
// Function: polar_to_xy()
// Synopsis: Convert 2D polar coordinates to cartesian coordinates.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: xy_to_polar(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz()
// Usage:
// pt = polar_to_xy(r, theta);
// pt = polar_to_xy([R, THETA]);
// pts = polar_to_xy([[R,THETA], [R,THETA], ...]);
// Topics: Coordinates, Points, Paths
// Synopsis: Convert 2d polar coordinates to cartesian coordinates.
// See Also: xy_to_polar(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz()
// Description:
// Called with two arguments, converts the `r` and `theta` 2D polar coordinate into an `[X,Y]` cartesian coordinate.
// Called with one `[R,THETA]` vector argument, converts the 2D polar coordinate into an `[X,Y]` cartesian coordinate.
@ -172,13 +176,13 @@ function polar_to_xy(r,theta) =
// Function: xy_to_polar()
// Synopsis: Convert 2D cartesian coordinates to polar coordinates (radius and angle)
// Topics: Coordinates, Points, Paths
// See Also: polar_to_xy(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz()
// Usage:
// r_theta = xy_to_polar(x,y);
// r_theta = xy_to_polar([X,Y]);
// r_thetas = xy_to_polar([[X,Y], [X,Y], ...]);
// Topics: Coordinates, Points, Paths
// Synopsis: Convert 2d cartesian coordinates to polar coordinates (radius and angle)
// See Also: polar_to_xy(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz()
// Description:
// Called with two arguments, converts the `x` and `y` 2D cartesian coordinate into a `[RADIUS,THETA]` polar coordinate.
// Called with one `[X,Y]` vector argument, converts the 2D cartesian coordinate into a `[RADIUS,THETA]` polar coordinate.
@ -209,16 +213,19 @@ function xy_to_polar(x, y) =
// Function: project_plane()
// Synopsis: Project a set of points onto a specified plane, returning 2D points.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: lift_plane()
// Usage:
// xy = project_plane(plane, p);
// Usage: To get a transform matrix
// M = project_plane(plane)
// Synopsis: Project a set of points onto a specified plane, returning 2d points.
// Description:
// Maps the provided 3d point(s) from 3D coordinates to a 2d coordinate system defined by `plane`. Points that are not
// Maps the provided 3D point(s) from 3D coordinates to a 2D coordinate system defined by `plane`. Points that are not
// on the specified plane will be projected orthogonally onto the plane. This coordinate system is useful if you need
// to perform 2d operations on a coplanar set of data. After those operations are done you can return the data
// to 3d with `lift_plane()`. You could also use this to force approximately coplanar data to be exactly coplanar.
// to perform 2D operations on a coplanar set of data. After those operations are done you can return the data
// to 3D with `lift_plane()`. You could also use this to force approximately coplanar data to be exactly coplanar.
// The parameter p can be a point, path, region, bezier patch or VNF.
// The plane can be specified as
// - A list of three points. The planar coordinate system will have [0,0] at plane[0], and plane[1] will lie on the Y+ axis.
@ -227,7 +234,6 @@ function xy_to_polar(x, y) =
// .
// If you omit the point specification then `project_plane()` returns a rotation matrix that maps the specified plane to the XY plane.
// Note that if you apply this transformation to data lying on the plane it will produce 3D points with the Z coordinate of zero.
// Topics: Coordinates, Points, Paths
// Arguments:
// plane = plane specification or point list defining the plane
// p = 3D point, path, region, VNF or bezier patch to project
@ -271,7 +277,7 @@ function project_plane(plane,p) =
is_vnf(p) ? [project_plane(plane,p[0]), p[1]]
: is_list(p) && is_list(p[0]) && is_vector(p[0][0],3) ? // bezier patch or region
[for(plist=p) project_plane(plane,plist)]
: assert(is_vector(p,3) || is_path(p,3),str("Data must be a 3d point, path, region, vnf or bezier patch",p))
: assert(is_vector(p,3) || is_path(p,3),str("Data must be a 3D point, path, region, vnf or bezier patch",p))
is_matrix(plane,3,3) ?
assert(!is_collinear(plane),"Points defining the plane must not be collinear")
let(
@ -285,13 +291,14 @@ function project_plane(plane,p) =
// Function: lift_plane()
// Synopsis: Map a list of 2D points onto a plane in 3D.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: project_plane()
// Usage:
// xyz = lift_plane(plane, p);
// Usage: to get transform matrix
// M = lift_plane(plane);
// Synopsis: Map a list of 2d points onto a plane in 3d.
// Topics: Coordinates, Points, Paths
// See Also: project_plane()
// Description:
// Converts the given 2D point on the plane to 3D coordinates of the specified plane.
// The parameter p can be a point, path, region, bezier patch or VNF.
@ -327,7 +334,7 @@ function lift_plane(plane, p) =
: is_vnf(p) ? [lift_plane(plane,p[0]), p[1]]
: is_list(p) && is_list(p[0]) && is_vector(p[0][0],3) ? // bezier patch or region
[for(plist=p) lift_plane(plane,plist)]
: assert(is_vector(p,2) || is_path(p,2),"Data must be a 2d point, path, region, vnf or bezier patch")
: assert(is_vector(p,2) || is_path(p,2),"Data must be a 2D point, path, region, vnf or bezier patch")
is_matrix(plane,3,3) ?
let(
v = plane[2]-plane[0],
@ -338,13 +345,14 @@ function lift_plane(plane, p) =
// Function: cylindrical_to_xyz()
// Synopsis: Convert cylindrical coordinates to cartesian coordinates.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: xyz_to_cylindrical(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz()
// Usage:
// pt = cylindrical_to_xyz(r, theta, z);
// pt = cylindrical_to_xyz([RADIUS,THETA,Z]);
// pts = cylindrical_to_xyz([[RADIUS,THETA,Z], [RADIUS,THETA,Z], ...]);
// Topics: Coordinates, Points, Paths
// See Also: xyz_to_cylindrical(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz()
// Synopsis: Convert cylindrical coordinates to cartesian coordinates.
// Description:
// Called with three arguments, converts the `r`, `theta`, and 'z' 3D cylindrical coordinate into an `[X,Y,Z]` cartesian coordinate.
// Called with one `[RADIUS,THETA,Z]` vector argument, converts the 3D cylindrical coordinate into an `[X,Y,Z]` cartesian coordinate.
@ -368,13 +376,13 @@ function cylindrical_to_xyz(r,theta,z) =
// Function: xyz_to_cylindrical()
// Synopsis: Convert 3D cartesian coordinates to cylindrical coordinates.
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz()
// Usage:
// rtz = xyz_to_cylindrical(x,y,z);
// rtz = xyz_to_cylindrical([X,Y,Z]);
// rtzs = xyz_to_cylindrical([[X,Y,Z], [X,Y,Z], ...]);
// Topics: Coordinates, Points, Paths
// Synopsis: Convert 3d cartesian coordinates to cylindrical coordinates.
// See Also: cylindrical_to_xyz(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz()
// Description:
// Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into a `[RADIUS,THETA,Z]` cylindrical coordinate.
// Called with one `[X,Y,Z]` vector argument, converts the 3D cartesian coordinate into a `[RADIUS,THETA,Z]` cylindrical coordinate.
@ -399,6 +407,10 @@ function xyz_to_cylindrical(x,y,z) =
// Function: spherical_to_xyz()
// Synopsis: Convert spherical coordinates to 3D cartesian coordinates.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), xyz_to_cylindrical(), altaz_to_xyz(), xyz_to_altaz()
// Usage:
// pt = spherical_to_xyz(r, theta, phi);
// pt = spherical_to_xyz([RADIUS,THETA,PHI]);
@ -408,9 +420,6 @@ function xyz_to_cylindrical(x,y,z) =
// Called with one `[RADIUS,THETA,PHI]` vector argument, converts the 3D spherical coordinate into an `[X,Y,Z]` cartesian coordinate.
// Called with a list of `[RADIUS,THETA,PHI]` vector arguments, converts each 3D spherical coordinate into `[X,Y,Z]` cartesian coordinates.
// Theta is the angle counter-clockwise of X+ on the XY plane. Phi is the angle down from the Z+ pole.
// Synopsis: Convert spherical coordinates to 3d cartesian coordinates.
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), xyz_to_cylindrical(), altaz_to_xyz(), xyz_to_altaz()
// Arguments:
// r = distance from origin.
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
@ -435,7 +444,7 @@ function spherical_to_xyz(r,theta,phi) =
// r_theta_phi = xyz_to_spherical([X,Y,Z])
// r_theta_phis = xyz_to_spherical([[X,Y,Z], [X,Y,Z], ...])
// Topics: Coordinates, Points, Paths
// Synopsis: Convert 3d cartesian coordinates to spherical coordinates.
// Synopsis: Convert 3D cartesian coordinates to spherical coordinates.
// See Also: cylindrical_to_xyz(), spherical_to_xyz(), xyz_to_cylindrical(), altaz_to_xyz(), xyz_to_altaz()
// Description:
// Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into a `[RADIUS,THETA,PHI]` spherical coordinate.
@ -461,13 +470,14 @@ function xyz_to_spherical(x,y,z) =
// Function: altaz_to_xyz()
// Synopsis: Convert altitude/azimuth/range to 3D cartesian coordinates.
// SynTags: Path
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), xyz_to_altaz()
// Usage:
// pt = altaz_to_xyz(alt, az, r);
// pt = altaz_to_xyz([ALT,AZ,R]);
// pts = altaz_to_xyz([[ALT,AZ,R], [ALT,AZ,R], ...]);
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), xyz_to_altaz()
// Synopsis: Convert altitude/azimuth/range to 3d cartesian coordinates.
// Description:
// Convert altitude/azimuth/range coordinates to 3D cartesian coordinates.
// Called with three arguments, converts the `alt`, `az`, and 'r' 3D altitude-azimuth coordinate into an `[X,Y,Z]` cartesian coordinate.
@ -493,13 +503,13 @@ function altaz_to_xyz(alt,az,r) =
// Function: xyz_to_altaz()
// Synopsis: Convert 3D cartesian coordinates to [altitude,azimuth,range].
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), altaz_to_xyz()
// Usage:
// alt_az_r = xyz_to_altaz(x,y,z);
// alt_az_r = xyz_to_altaz([X,Y,Z]);
// alt_az_rs = xyz_to_altaz([[X,Y,Z], [X,Y,Z], ...]);
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), altaz_to_xyz()
// Synopsis: Convert 3d cartesian coordinates to [altitude,azimuth,range].
// Description:
// Converts 3D cartesian coordinates to altitude/azimuth/range coordinates.
// Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into an `[ALTITUDE,AZIMUTH,RANGE]` coordinate.

View file

@ -18,6 +18,7 @@ $cubetruss_clip_thickness = 1.6;
// Module: cubetruss()
// Synopsis: Creates a multi-cube straight cubetruss shape.
// SynTags: Geom
// Topics: Trusses, CubeTruss, FDM Optimized, Parts
// See Also: cubetruss_segment(), cubetruss_support(), cubetruss(), cubetruss_corner()
// Usage:
@ -35,7 +36,6 @@ $cubetruss_clip_thickness = 1.6;
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Topics: Attachable, Trusses
// Examples:
// cubetruss(extents=3);
// cubetruss(extents=3, clips=FRONT);
@ -91,6 +91,7 @@ module cubetruss(extents=6, clips=[], bracing, size, strut, clipthick, anchor=CE
// Module: cubetruss_corner()
// Synopsis: Creates a multi-cube corner cubetruss shape.
// SynTags: Geom
// Topics: Trusses, CubeTruss, FDM Optimized, Parts
// See Also: cubetruss_segment(), cubetruss_support(), cubetruss(), cubetruss_corner()
// Usage:
@ -108,7 +109,6 @@ module cubetruss(extents=6, clips=[], bracing, size, strut, clipthick, anchor=CE
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Topics: Attachable, Trusses
// Examples:
// cubetruss_corner(extents=2);
// cubetruss_corner(extents=2, h=2);
@ -167,6 +167,7 @@ module cubetruss_corner(h=1, extents=[1,1,0,0,1], bracing, size, strut, clipthic
// Module: cubetruss_support()
// Synopsis: Creates a cubetruss support structure shape.
// SynTags: Geom
// Topics: Trusses, CubeTruss, FDM Optimized, Parts
// See Also: cubetruss_segment(), cubetruss_support(), cubetruss(), cubetruss_corner()
// Usage:
@ -181,7 +182,6 @@ module cubetruss_corner(h=1, extents=[1,1,0,0,1], bracing, size, strut, clipthic
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Topics: Attachable, Trusses
// Example(VPT=[0,0,0],VPD=150):
// cubetruss_support();
// Example(VPT=[0,0,0],VPD=200):
@ -234,6 +234,7 @@ module cubetruss_support(size, strut, extents=1, anchor=CENTER, spin=0, orient=U
// Module: cubetruss_foot()
// Synopsis: Creates a foot that can connect two cubetrusses.
// SynTags: Geom
// Topics: Trusses, CubeTruss, FDM Optimized, Parts
// See Also: cubetruss_segment(), cubetruss_support(), cubetruss(), cubetruss_corner()
// Usage:
@ -250,7 +251,6 @@ module cubetruss_support(size, strut, extents=1, anchor=CENTER, spin=0, orient=U
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Topics: Attachable, Trusses
// Examples:
// cubetruss_foot(w=1);
// cubetruss_foot(w=3);
@ -314,6 +314,7 @@ module cubetruss_foot(w=1, size, strut, clipthick, anchor=CENTER, spin=0, orient
// Module: cubetruss_joiner()
// Synopsis: Creates a joiner that can connect two cubetrusses end-to-end.
// SynTags: Geom
// Topics: Trusses, CubeTruss, FDM Optimized, Parts
// See Also: cubetruss_segment(), cubetruss_support(), cubetruss(), cubetruss_corner()
// Usage:
@ -331,7 +332,6 @@ module cubetruss_foot(w=1, size, strut, clipthick, anchor=CENTER, spin=0, orient
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Topics: Attachable, Trusses
// Examples:
// cubetruss_joiner(w=1, vert=false);
// cubetruss_joiner(w=1, vert=true);
@ -385,6 +385,7 @@ module cubetruss_joiner(w=1, vert=true, size, strut, clipthick, anchor=CENTER, s
// Module: cubetruss_uclip()
// Synopsis: Creates a joiner that can connect two cubetrusses end-to-end.
// SynTags: Geom
// Topics: Trusses, CubeTruss, FDM Optimized, Parts
// See Also: cubetruss_segment(), cubetruss_support(), cubetruss(), cubetruss_corner()
// Usage:
@ -401,7 +402,6 @@ module cubetruss_joiner(w=1, vert=true, size, strut, clipthick, anchor=CENTER, s
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Topics: Attachable, Trusses
// Examples:
// cubetruss_uclip(dual=false);
// cubetruss_uclip(dual=true);
@ -437,6 +437,7 @@ module cubetruss_uclip(dual=true, size, strut, clipthick, anchor=CENTER, spin=0,
// Module: cubetruss_segment()
// Synopsis: Creates a single cubetruss cube.
// SynTags: Geom
// Topics: Trusses, CubeTruss, FDM Optimized, Parts
// See Also: cubetruss_segment(), cubetruss_support(), cubetruss(), cubetruss_corner()
// Usage:
@ -451,7 +452,6 @@ module cubetruss_uclip(dual=true, size, strut, clipthick, anchor=CENTER, spin=0,
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Topics: Attachable, Trusses
// Examples:
// cubetruss_segment(bracing=false);
// cubetruss_segment(bracing=true);
@ -509,6 +509,7 @@ module cubetruss_segment(size, strut, bracing, anchor=CENTER, spin=0, orient=UP)
// Module: cubetruss_clip()
// Synopsis: Creates a clip for the end of a cubetruss to snap-lock it to another cubetruss.
// SynTags: Geom
// Topics: Trusses, CubeTruss, FDM Optimized, Parts
// See Also: cubetruss_segment(), cubetruss_support(), cubetruss(), cubetruss_corner()
// Usage:
@ -525,7 +526,6 @@ module cubetruss_segment(size, strut, bracing, anchor=CENTER, spin=0, orient=UP)
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Topics: Attachable, Trusses
// Examples:
// cubetruss_clip(extents=2);
// cubetruss_clip(extents=1);
@ -588,7 +588,6 @@ module cubetruss_clip(extents=1, size, strut, clipthick, anchor=CENTER, spin=0,
// gaps = The number of extra strut widths to add in, corresponding to each time a truss butts up against another.
// size = The length of each side of the cubetruss cubes. Default: `$cubetruss_size` (usually 30)
// strut = The width of the struts on the cubetruss cubes. Default: `$cubetruss_strut_size` (usually 3)
// Topics: Trusses
function cubetruss_dist(cubes=0, gaps=0, size, strut) =
let(
size = is_undef(size)? $cubetruss_size : size,

View file

@ -93,6 +93,7 @@
// Function&Module: move_copies()
// Synopsis: Translates copies of all children.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Translation, Copiers
// See Also: xcopies(), ycopies(), zcopies(), line_copies(), grid_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies()
//
@ -145,6 +146,7 @@ function move_copies(a=[[0,0,0]],p=_NO_ARG) =
// Function&Module: xcopies()
// Synopsis: Places copies of children along the X axis.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Translation, Copiers
// See Also: move_copies(), ycopies(), zcopies(), line_copies(), grid_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies()
//
@ -230,6 +232,7 @@ function xcopies(spacing, n, l, sp, p=_NO_ARG) =
// Function&Module: ycopies()
// Synopsis: Places copies of children along the Y axis.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Translation, Copiers
// See Also: move_copies(), xcopies(), zcopies(), line_copies(), grid_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies()
//
@ -315,6 +318,7 @@ function ycopies(spacing, n, l, sp, p=_NO_ARG) =
// Function&Module: zcopies()
// Synopsis: Places copies of children along the Z axis.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Translation, Copiers
// See Also: move_copies(), xcopies(), ycopies(), line_copies(), grid_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies()
//
@ -415,6 +419,7 @@ function zcopies(spacing, n, l, sp, p=_NO_ARG) =
// Function&Module: line_copies()
// Synopsis: Places copies of children along an arbitrary line.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Translation, Copiers
// See Also: move_copies(), xcopies(), ycopies(), zcopies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies()
//
@ -548,6 +553,7 @@ function line_copies(spacing, n, l, p1, p2, p=_NO_ARG) =
// Function&Module: grid_copies()
// Synopsis: Places copies of children in an [X,Y] grid.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Translation, Copiers
// See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies()
//
@ -771,6 +777,7 @@ function grid_copies(spacing, n, size, stagger=false, inside=undef, nonzero, p=_
// Function&Module: rot_copies()
// Synopsis: Rotates copies of children.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Rotation, Copiers
// See Also: rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies(), move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), grid_copies()
//
@ -895,6 +902,7 @@ function rot_copies(rots=[], v, cp=[0,0,0], n, sa=0, offset=0, delta=[0,0,0], su
// Function&Module: xrot_copies()
// Synopsis: Rotates copies of children around the X axis.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Rotation, Copiers
// See Also: rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies(), move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), grid_copies()
//
@ -974,6 +982,7 @@ function xrot_copies(rots=[], cp=[0,0,0], n, sa=0, r, d, subrot=true, p=_NO_ARG)
// Function&Module: yrot_copies()
// Synopsis: Rotates copies of children around the Y axis.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Rotation, Copiers
// See Also: rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies(), move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), grid_copies()
//
@ -1053,6 +1062,7 @@ function yrot_copies(rots=[], cp=[0,0,0], n, sa=0, r, d, subrot=true, p=_NO_ARG)
// Function&Module: zrot_copies()
// Synopsis: Rotates copies of children around the Z axis.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Rotation, Copiers
// See Also: rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies(), move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), grid_copies()
//
@ -1132,6 +1142,7 @@ function zrot_copies(rots=[], cp=[0,0,0], n, sa=0, r, d, subrot=true, p=_NO_ARG)
// Function&Module: arc_copies()
// Synopsis: Distributes duplicates of children along an arc.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Rotation, Copiers
// See Also: rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), sphere_copies(), move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), grid_copies()
//
@ -1256,6 +1267,7 @@ function arc_copies(
// Function&Module: sphere_copies()
// Synopsis: Distributes copies of children over the surface of a sphere.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Rotation, Copiers
// See Also: rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), grid_copies()
//
@ -1363,6 +1375,7 @@ function sphere_copies(n=100, r=undef, d=undef, cone_ang=90, scale=[1,1,1], perp
// Function&Module: path_copies()
// Synopsis: Uniformly distributes copies of children along a path.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Copiers
// See Also: line_copies(), move_copies(), xcopies(), ycopies(), zcopies(), grid_copies(), xflip_copy(), yflip_copy(), zflip_copy(), mirror_copy()
//
@ -1576,6 +1589,7 @@ function path_copies(path, n, spacing, sp=undef, dist, rotate_children=true, dis
// Function&Module: xflip_copy()
// Synopsis: Makes a copy of children mirrored across the X axis.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Translation, Copiers
// See Also: yflip_copy(), zflip_copy(), mirror_copy(), path_copies(), move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), grid_copies()
//
@ -1626,6 +1640,7 @@ function xflip_copy(offset=0, x=0, p=_NO_ARG) =
// Function&Module: yflip_copy()
// Synopsis: Makes a copy of children mirrored across the Y axis.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Translation, Copiers
// See Also: xflip_copy(), zflip_copy(), mirror_copy(), path_copies(), move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), grid_copies()
//
@ -1676,6 +1691,7 @@ function yflip_copy(offset=0, y=0, p=_NO_ARG) =
// Function&Module: zflip_copy()
// Synopsis: Makes a copy of children mirrored across the Z axis.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Translation, Copiers
// See Also: xflip_copy(), yflip_copy(), mirror_copy(), path_copies(), move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), grid_copies()
//
@ -1726,6 +1742,7 @@ function zflip_copy(offset=0, z=0, p=_NO_ARG) =
// Function&Module: mirror_copy()
// Synopsis: Makes a copy of children mirrored across a given plane.
// SynTags: MatList, Trans
// Topics: Transformations, Distributors, Translation, Copiers
// See Also: xflip_copy(), yflip_copy(), zflip_copy(), path_copies(), move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), grid_copies()
//
@ -1815,6 +1832,14 @@ function mirror_copy(v=[0,0,1], offset=0, cp, p=_NO_ARG) =
// Section: Distributing children individually along a line
///////////////////
// Module: xdistribute()
// Synopsis: Distributes each child, individually, out along the X axis.
// SynTags: Trans
// See Also: xdistribute(), ydistribute(), zdistribute(), distribute()
//
// Usage:
// xdistribute(spacing, [sizes]) CHILDREN;
// xdistribute(l=, [sizes=]) CHILDREN;
//
//
// Description:
// Spreads out the children individually along the X axis.
@ -1822,10 +1847,6 @@ function mirror_copy(v=[0,0,1], offset=0, cp, p=_NO_ARG) =
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// xdistribute(spacing, [sizes]) CHILDREN;
// xdistribute(l=, [sizes=]) CHILDREN;
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
@ -1861,6 +1882,13 @@ module xdistribute(spacing=10, sizes=undef, l=undef)
// Module: ydistribute()
// Synopsis: Distributes each child, individually, out along the Y axis.
// SynTags: Trans
// See Also: xdistribute(), ydistribute(), zdistribute(), distribute()
//
// Usage:
// ydistribute(spacing, [sizes]) CHILDREN;
// ydistribute(l=, [sizes=]) CHILDREN;
//
// Description:
// Spreads out the children individually along the Y axis.
@ -1868,10 +1896,6 @@ module xdistribute(spacing=10, sizes=undef, l=undef)
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// ydistribute(spacing, [sizes]) CHILDREN;
// ydistribute(l=, [sizes=]) CHILDREN;
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
@ -1907,6 +1931,13 @@ module ydistribute(spacing=10, sizes=undef, l=undef)
// Module: zdistribute()
// Synopsis: Distributes each child, individually, out along the Z axis.
// SynTags: Trans
// See Also: xdistribute(), ydistribute(), zdistribute(), distribute()
//
// Usage:
// zdistribute(spacing, [sizes]) CHILDREN;
// zdistribute(l=, [sizes=]) CHILDREN;
//
// Description:
// Spreads out each individual child along the Z axis.
@ -1914,10 +1945,6 @@ module ydistribute(spacing=10, sizes=undef, l=undef)
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// zdistribute(spacing, [sizes]) CHILDREN;
// zdistribute(l=, [sizes=]) CHILDREN;
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
@ -1954,6 +1981,13 @@ module zdistribute(spacing=10, sizes=undef, l=undef)
// Module: distribute()
// Synopsis: Distributes each child, individually, out along an arbitrary line.
// SynTags: Trans
// See Also: xdistribute(), ydistribute(), zdistribute(), distribute()
//
// Usage:
// distribute(spacing, sizes, dir) CHILDREN;
// distribute(l=, [sizes=], [dir=]) CHILDREN;
//
// Description:
// Spreads out the children individually along the direction `dir`.
@ -1961,10 +1995,6 @@ module zdistribute(spacing=10, sizes=undef, l=undef)
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// distribute(spacing, sizes, dir) CHILDREN;
// distribute(l=, [sizes=], [dir=]) CHILDREN;
//
// Arguments:
// spacing = Spacing to add between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.

View file

@ -18,6 +18,7 @@
// Module: stroke()
// Synopsis: Draws a line along a path or region boundry.
// SynTags: Geom
// Topics: Paths (2D), Paths (3D), Drawing Tools
// See Also: offset_stroke(), path_sweep()
// Usage:
@ -588,6 +589,7 @@ module stroke(
// Function&Module: dashed_stroke()
// Synopsis: Draws a dashed line along a path or region boundry.
// SynTags: Geom, PathList
// Topics: Paths, Drawing Tools
// See Also: stroke(), path_cut()
// Usage: As a Module
@ -666,7 +668,9 @@ module dashed_stroke(path, dashpat=[3,3], width=1, closed=false, fit=true, round
// Function&Module: arc()
// Synopsis: Draws a 2D pie-slice or returns 2D or 3D path forming an arc.
// SynTags: Geom, Path
// Topics: Paths (2D), Paths (3D), Shapes (2D), Path Generators
// See Also: pie_slice(), stroke()
//
// Usage: 2D arc from 0º to `angle` degrees.
// path=arc(n, r|d=, angle);
@ -860,7 +864,9 @@ module arc(n, r, angle, d, cp, points, corner, width, thickness, start, wedge=fa
// Function: helix()
// Synopsis: Creates a 2d spiral or 3d helical path.
// SynTags: Path
// Topics: Path Generators, Paths, Drawing Tools
// See Also: pie_slice(), stroke(), thread_helix(), path_sweep()
//
// Usage:
// path = helix(l|h, [turns=], [angle=], r=|r1=|r2=, d=|d1=|d2=);
@ -915,10 +921,11 @@ function _normal_segment(p1,p2) =
// Function: turtle()
// Synopsis: Uses [turtle graphics](https://en.wikipedia.org/wiki/Turtle_graphics) to generate a 2D path.
// SynTags: Path
// Topics: Shapes (2D), Path Generators (2D), Mini-Language
// See Also: turtle3d()
// See Also: turtle3d(), stroke(), path_sweep()
// Usage:
// turtle(commands, [state], [full_state=], [repeat=])
// path = turtle(commands, [state], [full_state=], [repeat=])
// Description:
// Use a sequence of [turtle graphics]{https://en.wikipedia.org/wiki/Turtle_graphics} commands to generate a path. The parameter `commands` is a list of
// turtle commands and optional parameters for each command. The turtle state has a position, movement direction,
@ -1178,7 +1185,9 @@ function _turtle_command(command, parm, parm2, state, index) =
// Module: debug_polygon()
// Synopsis: Draws an annotated polygon.
// SynTags: Geom
// Topics: Shapes (2D)
// See Also: debug_vnf(), debug_bezier()
//
// Usage:
// debug_polygon(points, paths, [vertices=], [edges=], [convexity=], [size=]);

View file

@ -27,6 +27,7 @@
// Function&Module: spur_gear()
// Synopsis: Creates a spur gear shape.
// SynTags: Geom, VNF
// Topics: Gears, Parts
// See Also: rack(), spur_gear(), spur_gear2d(), bevel_gear()
// Usage: As a Module
@ -193,6 +194,7 @@ module spur_gear(
// Function&Module: spur_gear2d()
// Synopsis: Creates a 2D spur gear shape.
// SynTags: Geom, Path
// Topics: Gears, Parts
// See Also: rack(), spur_gear(), spur_gear2d(), bevel_gear()
// Usage: As Module
@ -294,6 +296,7 @@ module spur_gear2d(
// Function&Module: rack()
// Synopsis: Creates a gear rack shape.
// SynTags: Geom, VNF
// Topics: Gears, Parts
// See Also: rack2d(), spur_gear(), spur_gear2d(), bevel_gear()
// Usage: As a Module
@ -443,6 +446,7 @@ function rack(
// Function&Module: rack2d()
// Synopsis: Creates a 2D gear rack shape.
// SynTags: Geom, Path
// Topics: Gears, Parts
// See Also: rack(), spur_gear(), spur_gear2d(), bevel_gear()
// Usage: As a Module
@ -566,6 +570,7 @@ module rack2d(
// Function&Module: bevel_gear()
// Synopsis: Creates a possibly spiral beveled gear shape.
// SynTags: Geom, VNF
// Topics: Gears, Parts
// See Also: rack(), rack2d(), spur_gear(), spur_gear2d(), bevel_pitch_angle(), bevel_gear()
// Usage: As a Module
@ -826,6 +831,7 @@ module bevel_gear(
// Function&Module: worm()
// Synopsis: Creates a worm shape that will mate with a worm gear.
// SynTags: Geom, VNF
// Topics: Gears, Parts
// See Also: worm(), worm_gear(), rack(), rack2d(), spur_gear(), spur_gear2d(), bevel_pitch_angle(), bevel_gear()
// Usage: As a Module
@ -946,6 +952,7 @@ module worm(
// Function&Module: worm_gear()
// Synopsis: Creates a worm gear shape that will mate with a worm.
// SynTags: Geom, VNF
// Topics: Gears, Parts
// See Also: worm(), worm_gear(), rack(), rack2d(), spur_gear(), spur_gear2d(), bevel_pitch_angle(), bevel_gear()
// Usage: As a Module

View file

@ -15,10 +15,11 @@
// Section: Lines, Rays, and Segments
// Function: is_point_on_line()
// Synopsis: Determine if a point is on a line, ray or segment.
// Topics: Geometry, Points, Segments
// See Also: is_collinear(), is_point_on_line(), point_line_distance(), line_from_points()
// Usage:
// pt = is_point_on_line(point, line, [bounded], [eps]);
// Topics: Geometry, Points, Segments
// Synopsis: Determine if a point is on a line, ray or segment.
// Description:
// Determine if the point is on the line segment, ray or segment defined by the two between two points.
// Returns true if yes, and false if not. If bounded is set to true it specifies a segment, with
@ -140,10 +141,11 @@ function _point_left_of_line2d(point, line, eps=EPSILON) =
// Function: is_collinear()
// Synopsis: Determine if points are collinear.
// Topics: Geometry, Points, Collinearity
// See Also: is_collinear(), is_point_on_line(), point_line_distance(), line_from_points()
// Usage:
// bool = is_collinear(a, [b, c], [eps]);
// Synopsis: Determine if a points are collinear.
// Topics: Geometry, Points, Collinearity
// Description:
// Returns true if the points `a`, `b` and `c` are co-linear or if the list of points `a` is collinear.
// Arguments:
@ -162,10 +164,11 @@ function is_collinear(a, b, c, eps=EPSILON) =
// Function: point_line_distance()
// Synopsis: Find shortest distance from point to a line, segment or ray.
// Topics: Geometry, Points, Lines, Distance
// See Also: is_collinear(), is_point_on_line(), point_line_distance(), line_from_points()
// Usage:
// dist = point_line_distance(line, pt, [bounded]);
// Topics: Geometry, Points, Lines, Distance
// Synopsis: Find shortest distance from point to a line, segment or ray.
// Description:
// Finds the shortest distance from the point `pt` to the specified line, segment or ray.
// The bounded parameter specifies the whether the endpoints give a ray or segment.
@ -187,11 +190,11 @@ function point_line_distance(pt, line, bounded=false) =
// Function: segment_distance()
// Usage:
// dist = segment_distance(seg1, seg2, [eps]);
// Synopsis: Find smallest distance between two line semgnets.
// Topics: Geometry, Segments, Distance
// See Also: convex_collision(), convex_distance()
// Synopsis: Find smallest distance between two line semgnets.
// Usage:
// dist = segment_distance(seg1, seg2, [eps]);
// Description:
// Returns the smallest distance of the points on two given line segments.
// Arguments:
@ -207,13 +210,14 @@ function segment_distance(seg1, seg2,eps=EPSILON) =
// Function: line_normal()
// Synopsis: Return normal vector to given line.
// Topics: Geometry, Lines
// See Also: line_intersection(), line_from_points()
// Usage:
// vec = line_normal([P1,P2])
// vec = line_normal(p1,p2)
// Topics: Geometry, Lines
// Description:
// Returns the 2D normal vector to the given 2D line. This is otherwise known as the perpendicular vector counter-clockwise to the given ray.
// Synopsis: Return normal vector to given line.
// Arguments:
// p1 = First point on 2D line.
// p2 = Second point on 2D line.
@ -255,9 +259,11 @@ function _general_line_intersection(s1,s2,eps=EPSILON) =
// Function: line_intersection()
// Synopsis: Compute intersection of two lines, segments or rays.
// Topics: Geometry, Lines
// See Also: line_normal(), line_from_points()
// Usage:
// pt = line_intersection(line1, line2, [bounded1], [bounded2], [bounded=], [eps=]);
// Synopsis: Compute intersection of two lines, segments or rays.
// Description:
// Returns the intersection point of any two 2D lines, segments or rays. Returns undef
// if they do not intersect. You specify a line by giving two distinct points on the
@ -316,10 +322,11 @@ function line_intersection(line1, line2, bounded1, bounded2, bounded, eps=EPSILO
// Function: line_closest_point()
// Synopsis: Find point on given line, segment or ray that is closest to a given point.
// Topics: Geometry, Lines, Distance
// See Also: line_normal(), point_line_distance()
// Usage:
// pt = line_closest_point(line, pt, [bounded]);
// Topics: Geometry, Lines, Distance
// Synopsis: Find point on given line, segment or ray that is closest to a given point.
// Description:
// Returns the point on the given line, segment or ray that is closest to the given point `pt`.
// The inputs `line` and `pt` args should be of the same dimension. The parameter bounded indicates
@ -401,10 +408,10 @@ function line_closest_point(line, pt, bounded=false) =
// Function: line_from_points()
// Usage:
// line = line_from_points(points, [fast], [eps]);
// Synopsis: Given a list of collinear points, return the line they define.
// Topics: Geometry, Lines, Points
// Usage:
// line = line_from_points(points, [fast], [eps]);
// Description:
// Given a list of 2 or more collinear points, returns two points defining a line containing them.
// If `fast` is false and the points are coincident or non-collinear, then `undef` is returned.
@ -428,10 +435,11 @@ function line_from_points(points, fast=false, eps=EPSILON) =
// Function: is_coplanar()
// Synopsis: Check if 3d points are coplanar and not collinear.
// Topics: Geometry, Coplanarity
// See Also: plane3pt(), plane3pt_indexed(), plane_from_normal(), plane_from_points(), plane_from_polygon()
// Usage:
// bool = is_coplanar(points,[eps]);
// Topics: Geometry, Coplanarity
// Synopsis: Check if 3d points are coplanar and not collinear.
// Description:
// Returns true if the given 3D points are non-collinear and are on a plane.
// Arguments:
@ -449,11 +457,12 @@ function is_coplanar(points, eps=EPSILON) =
// Function: plane3pt()
// Synopsis: Return a plane from 3 points.
// Topics: Geometry, Planes
// See Also: plane3pt(), plane3pt_indexed(), plane_from_normal(), plane_from_points(), plane_from_polygon()
// Usage:
// plane = plane3pt(p1, p2, p3);
// plane = plane3pt([p1, p2, p3]);
// Topics: Geometry, Planes
// Synopsis: Return a plane from 3 points.
// Description:
// Generates the normalized cartesian equation of a plane from three 3d points.
// Returns [A,B,C,D] where Ax + By + Cz = D is the equation of a plane.
@ -474,10 +483,11 @@ function plane3pt(p1, p2, p3) =
// Function: plane3pt_indexed()
// Synopsis: Given list of 3d points and 3 indices, return the plane they define.
// Topics: Geometry, Planes
// See Also: plane3pt(), plane3pt_indexed(), plane_from_normal(), plane_from_points(), plane_from_polygon()
// Usage:
// plane = plane3pt_indexed(points, i1, i2, i3);
// Topics: Geometry, Planes
// Synopsis: Given list of 3d points and 3 indices, return the plane they define.
// Description:
// Given a list of 3d points, and the indices of three of those points,
// generates the normalized cartesian equation of a plane that those points all
@ -503,10 +513,11 @@ function plane3pt_indexed(points, i1, i2, i3) =
// Function: plane_from_normal()
// Usage:
// plane = plane_from_normal(normal, [pt])
// Synopsis: Return plane defined by normal vector and a point.
// Topics: Geometry, Planes
// See Also: plane3pt(), plane3pt_indexed(), plane_from_normal(), plane_from_points(), plane_from_polygon()
// Usage:
// plane = plane_from_normal(normal, [pt])
// Description:
// Returns a plane defined by a normal vector and a point. If you omit `pt` you will get a plane
// passing through the origin.
@ -564,11 +575,11 @@ function _covariance_evec_eval(points) =
// Function: plane_from_points()
// Usage:
// plane = plane_from_points(points, [fast], [eps]);
// Synopsis: Return plane defined by a set of coplanar 3d points, with arbitrary normal direction.
// Topics: Geometry, Planes, Points
// See Also: plane_from_polygon()
// See Also: plane3pt(), plane3pt_indexed(), plane_from_normal(), plane_from_points(), plane_from_polygon()
// Usage:
// plane = plane_from_points(points, [fast], [eps]);
// Description:
// Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane,
// that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane and norm([A,B,C])=1.
@ -603,11 +614,11 @@ function plane_from_points(points, fast=false, eps=EPSILON) =
// Function: plane_from_polygon()
// Usage:
// plane = plane_from_polygon(points, [fast], [eps]);
// Synopsis: Given a 3d planar polygon, returns directed plane.
// Topics: Geometry, Planes, Polygons
// See Also: plane_from_points()
// See Also: plane3pt(), plane3pt_indexed(), plane_from_normal(), plane_from_points(), plane_from_polygon()
// Usage:
// plane = plane_from_polygon(points, [fast], [eps]);
// Description:
// Given a 3D planar polygon, returns the normalized cartesian equation of its plane.
// Returns [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1.
@ -640,10 +651,11 @@ function plane_from_polygon(poly, fast=false, eps=EPSILON) =
// Function: plane_normal()
// Synopsis: Returns the normal vector to a plane.
// Topics: Geometry, Planes
// See Also: plane3pt(), plane3pt_indexed(), plane_from_normal(), plane_from_points(), plane_from_polygon(), plane_normal(), plane_offset()
// Usage:
// vec = plane_normal(plane);
// Topics: Geometry, Planes
// Synopsis: Returns the normal vector to a plane.
// Description:
// Returns the unit length normal vector for the given plane.
// Arguments:
@ -654,10 +666,11 @@ function plane_normal(plane) =
// Function: plane_offset()
// Synopsis: Returns the signed offset of the plane from the origin.
// Topics: Geometry, Planes
// See Also: plane3pt(), plane3pt_indexed(), plane_from_normal(), plane_from_points(), plane_from_polygon(), plane_normal(), plane_offset()
// Usage:
// d = plane_offset(plane);
// Topics: Geometry, Planes
// Synopsis: Returns the signed offset of the plane from the origin.
// Description:
// Returns coeficient D of the normalized plane equation `Ax+By+Cz=D`, or the scalar offset of the plane from the origin.
// This value may be negative.
@ -686,21 +699,22 @@ function _general_plane_line_intersection(plane, line, eps=EPSILON) =
/// Internal Function: normalize_plane()
// Usage:
// nplane = normalize_plane(plane);
/// Usage:
/// nplane = normalize_plane(plane);
/// Topics: Geometry, Planes
// Description:
// Returns a new representation [A,B,C,D] of `plane` where norm([A,B,C]) is equal to one.
/// Description:
/// Returns a new representation [A,B,C,D] of `plane` where norm([A,B,C]) is equal to one.
function _normalize_plane(plane) =
assert( _valid_plane(plane), str("Invalid plane. ",plane ) )
plane/norm(point3d(plane));
// Function: plane_line_intersection()
// Synopsis: Returns the intersection of a plane and 3d line, segment or ray.
// Topics: Geometry, Planes, Lines, Intersection
// See Also: plane3pt(), plane_from_normal(), plane_from_points(), plane_from_polygon(), line_intersection()
// Usage:
// pt = plane_line_intersection(plane, line, [bounded], [eps]);
// Topics: Geometry, Planes, Lines, Intersection
// Synopsis: Returns the intersection of a plane and 3d line, segment or ray.
// Description:
// Takes a line, and a plane [A,B,C,D] where the equation of that plane is `Ax+By+Cz=D`.
// If `line` intersects `plane` at one point, then that intersection point is returned.
@ -727,11 +741,12 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) =
// Function: plane_intersection()
// Synopsis: Returns the intersection of two or three planes.
// Topics: Geometry, Planes, Intersection
// See Also: plane3pt(), plane_from_normal(), plane_from_points(), plane_from_polygon(), line_intersection()
// Usage:
// line = plane_intersection(plane1, plane2)
// pt = plane_intersection(plane1, plane2, plane3)
// Topics: Geometry, Planes, Intersection
// Synopsis: Returns the intersection of two or three planes.
// Description:
// Compute the point which is the intersection of the three planes, or the line intersection of two planes.
// If you give three planes the intersection is returned as a point. If you give two planes the intersection
@ -763,10 +778,11 @@ function plane_intersection(plane1,plane2,plane3) =
// Function: plane_line_angle()
// Synopsis: Returns the angle between a plane and a 3d line.
// Topics: Geometry, Planes, Lines, Angle
// See Also: plane3pt(), plane_from_normal(), plane_from_points(), plane_from_polygon(), plane_intersection(), line_intersection(), vector_angle()
// Usage:
// angle = plane_line_angle(plane,line);
// Topics: Geometry, Planes, Lines, Angle
// Synopsis: Returns the angle between a plane and a 3d line.
// Description:
// Compute the angle between a plane [A, B, C, D] and a 3d line, specified as a pair of 3d points [p1,p2].
// The resulting angle is signed, with the sign positive if the vector p2-p1 lies above the plane, on
@ -784,10 +800,11 @@ function plane_line_angle(plane, line) =
// Function: plane_closest_point()
// Synopsis: Returns the orthogonal projection of points onto a plane.
// Topics: Geometry, Planes, Projection
// See Also: plane3pt(), line_closest_point(), point_plane_distance()
// Usage:
// pts = plane_closest_point(plane, points);
// Topics: Geometry, Planes, Projection
// Synopsis: Returns the orthogonal projection of points onto a plane.
// Description:
// Given a plane definition `[A,B,C,D]`, where `Ax+By+Cz=D`, and a list of 2d or
// 3d points, return the closest 3D orthogonal projection of the points on the plane.
@ -820,10 +837,11 @@ function plane_closest_point(plane, points) =
// Function: point_plane_distance()
// Synopsis: Determine distance between a point and plane.
// Topics: Geometry, Planes, Distance
// See Also: plane3pt(), line_closest_point(), plane_closest_point()
// Usage:
// dist = point_plane_distance(plane, point)
// Topics: Geometry, Planes, Distance
// Synopsis: Determine distance between a point and plane.
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz=D, determines how far from that plane the given point is.
@ -852,10 +870,11 @@ function _pointlist_greatest_distance(points,plane) =
// Function: are_points_on_plane()
// Synopsis: Determine if all of the listed points are on a plane.
// Topics: Geometry, Planes, Points
// See Also: plane3pt(), line_closest_point(), plane_closest_point(), is_coplanar()
// Usage:
// bool = are_points_on_plane(points, plane, [eps]);
// Topics: Geometry, Planes, Points
// Synopsis: Determine if all of the listed points are on a plane.
// Description:
// Returns true if the given 3D points are on the given plane.
// Arguments:
@ -889,10 +908,11 @@ function _is_point_above_plane(plane, point) =
// Section: Circle Calculations
// Function: circle_line_intersection()
// Usage:
// pts = circle_line_intersection(r|d=, cp, line, [bounded], [eps=]);
// Synopsis: Find the intersection points between a 2d circle and a line, ray or segment.
// Topics: Geometry, Circles, Lines, Intersection
// See Also: circle_line_intersection(), circle_circle_intersection(), circle_2tangents(), circle_3points(), circle_point_tangents(), circle_circle_tangents()
// Usage:
// pts = circle_line_intersection(r|d=, cp, line, [bounded], [eps=]);
// Description:
// Find intersection points between a 2D circle and a line, ray or segment specified by two points.
// By default the line is unbounded. Returns the list of zero or more intersection points.
@ -963,10 +983,11 @@ function _circle_or_sphere_line_intersection(r, cp, line, bounded=false, d, eps=
// Function: circle_circle_intersection()
// Usage:
// pts = circle_circle_intersection(r1|d1=, cp1, r2|d2=, cp2, [eps]);
// Synopsis: Find the intersection points of two 2d circles.
// Topics: Geometry, Circles
// See Also: circle_line_intersection(), circle_circle_intersection(), circle_2tangents(), circle_3points(), circle_point_tangents(), circle_circle_tangents()
// Usage:
// pts = circle_circle_intersection(r1|d1=, cp1, r2|d2=, cp2, [eps]);
// Description:
// Compute the intersection points of two circles. Returns a list of the intersection points, which
// will contain two points in the general case, one point for tangent circles, or will be empty
@ -1030,11 +1051,12 @@ function circle_circle_intersection(r1, cp1, r2, cp2, eps=EPSILON, d1, d2) =
// Function: circle_2tangents()
// Synopsis: Given two 2d or 3d rays, find a circle tangent to both.
// Topics: Geometry, Circles, Tangents
// See Also: circle_line_intersection(), circle_circle_intersection(), circle_2tangents(), circle_3points(), circle_point_tangents(), circle_circle_tangents()
// Usage:
// circ = circle_2tangents(r|d=, pt1, pt2, pt3, [tangents=]);
// circ = circle_2tangents(r|d=, [PT1, PT2, PT3], [tangents=]);
// Topics: Geometry, Circles, Tangents
// Synopsis: Given two 2d or 3d rays, find a circle tangent to both.
// Description:
// Given a pair of 2d or 3d rays with a common origin, and a known circle radius/diameter, finds
// the centerpoint for the circle of that size that touches both rays tangentally.
@ -1131,11 +1153,12 @@ function circle_2tangents(r, pt1, pt2, pt3, tangents=false, d) =
// Function: circle_3points()
// Synopsis: Find a circle passing through three 2d or 3d points.
// Topics: Geometry, Circles
// See Also: circle_line_intersection(), circle_circle_intersection(), circle_2tangents(), circle_3points(), circle_point_tangents(), circle_circle_tangents()
// Usage:
// circ = circle_3points(pt1, pt2, pt3);
// circ = circle_3points([PT1, PT2, PT3]);
// Topics: Geometry, Circles
// Synopsis: Find a circle passing through three 2d or 3d points.
// Description:
// Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear
// points where NORMAL is the normal vector of the plane that the circle is on (UP or DOWN if the points are 2D).
@ -1183,10 +1206,11 @@ function circle_3points(pt1, pt2, pt3) =
// Function: circle_point_tangents()
// Synopsis: Given a circle and point, find tangents to circle passing through the point.
// Topics: Geometry, Circles, Tangents
// See Also: circle_line_intersection(), circle_circle_intersection(), circle_2tangents(), circle_3points(), circle_point_tangents(), circle_circle_tangents()
// Usage:
// tangents = circle_point_tangents(r|d=, cp, pt);
// Topics: Geometry, Circles, Tangents
// Synopsis: Given a circle and point, find tangents to circle passing through the point.
// Description:
// Given a 2d circle and a 2d point outside that circle, finds the 2d tangent point(s) on the circle for a
// line passing through the point. Returns a list of zero or more 2D tangent points.
@ -1220,10 +1244,11 @@ function circle_point_tangents(r, cp, pt, d) =
// Function: circle_circle_tangents()
// Synopsis: Find tangents to a pair of circles in 2d.
// Topics: Geometry, Circles, Tangents
// See Also: circle_line_intersection(), circle_circle_intersection(), circle_2tangents(), circle_3points(), circle_point_tangents(), circle_circle_tangents()
// Usage:
// segs = circle_circle_tangents(r1|d1=, cp1, r2|d2=, cp2);
// Topics: Geometry, Circles, Tangents
// Synopsis: Find tangents to a pair of circles in 2d.
// Description:
// Computes 2d lines tangents to a pair of circles in 2d. Returns a list of line endpoints [p1,p2] where
// p1 is the tangent point on circle 1 and p2 is the tangent point on circle 2.
@ -1346,10 +1371,11 @@ function _noncollinear_triple(points,error=true,eps=EPSILON) =
// Function: sphere_line_intersection()
// Synopsis: Find intersection between a sphere and line, ray or segment.
// Topics: Geometry, Spheres, Lines, Intersection
// See Also: circle_line_intersection(), circle_circle_intersection(), circle_2tangents(), circle_3points(), circle_point_tangents(), circle_circle_tangents()
// Usage:
// isect = sphere_line_intersection(r|d=, cp, line, [bounded], [eps=]);
// Topics: Geometry, Spheres, Lines, Intersection
// Synopsis: Find intersection between a sphere and line, ray or segment.
// Description:
// Find intersection points between a sphere and a line, ray or segment specified by two points.
// By default the line is unbounded.
@ -1379,10 +1405,11 @@ function sphere_line_intersection(r, cp, line, bounded=false, d, eps=EPSILON) =
// Section: Polygons
// Function: polygon_area()
// Synopsis: Calculate area of a 2d or 3d polygon.
// Topics: Geometry, Polygons, Area
// See Also: polygon_area(), centroid(), polygon_normal(), point_in_polygon(), polygon_line_intersection()
// Usage:
// area = polygon_area(poly, [signed]);
// Topics: Geometry, Polygons, Area
// Synopsis: Calculate area of a 2d or 3d polygon.
// Description:
// Given a 2D or 3D simple planar polygon, returns the area of that polygon.
// If the polygon is non-planar the result is `undef.` If the polygon is self-intersecting
@ -1414,10 +1441,11 @@ function polygon_area(poly, signed=false) =
// Function: centroid()
// Synopsis: Compute centroid of a 2d or 3d polygon or a VNF.
// Topics: Geometry, Polygons, Centroid
// See Also: polygon_area(), centroid(), polygon_normal(), point_in_polygon(), polygon_line_intersection()
// Usage:
// c = centroid(object, [eps]);
// Topics: Geometry, Polygons, Centroid
// Synopsis: Compute centroid of a 2d or 3d polygon or a VNF.
// Description:
// Given a simple 2D polygon, returns the 2D coordinates of the polygon's centroid.
// Given a simple 3D planar polygon, returns the 3D coordinates of the polygon's centroid.
@ -1500,10 +1528,11 @@ function _polygon_centroid(poly, eps=EPSILON) =
// Function: polygon_normal()
// Synopsis: Return normal to a polygon.
// Topics: Geometry, Polygons
// See Also: polygon_area(), centroid(), polygon_normal(), point_in_polygon(), polygon_line_intersection()
// Usage:
// vec = polygon_normal(poly);
// Topics: Geometry, Polygons
// Synopsis: Return normal to a polygon.
// Description:
// Given a 3D simple planar polygon, returns a unit normal vector for the polygon. The vector
// is oriented so that if the normal points towards the viewer, the polygon winds in the clockwise
@ -1529,10 +1558,11 @@ function polygon_normal(poly) =
// Function: point_in_polygon()
// Synopsis: Checks if a 2d point is inside or on the boundary of a 2d polygon.
// Topics: Geometry, Polygons
// See Also: polygon_area(), centroid(), polygon_normal(), point_in_polygon(), polygon_line_intersection()
// Usage:
// bool = point_in_polygon(point, poly, [nonzero], [eps])
// Topics: Geometry, Polygons
// Synopsis: Checks if a 2d point is inside or on the boundary of a 2d polygon.
// Description:
// This function tests whether the given 2D point is inside, outside or on the boundary of
// the specified 2D polygon.
@ -1673,10 +1703,11 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
// Function: polygon_line_intersection()
// Synopsis: Find intersection between 2d or 3d polygon and a line, segment or ray.
// Topics: Geometry, Polygons, Lines, Intersection
// See Also: polygon_area(), centroid(), polygon_normal(), point_in_polygon(), polygon_line_intersection()
// Usage:
// pt = polygon_line_intersection(poly, line, [bounded], [nonzero], [eps]);
// Topics: Geometry, Polygons, Lines, Intersection
// Synopsis: Find intersection between 2d or 3d polygon and a line, segment or ray.
// Description:
// Takes a possibly bounded line, and a 2D or 3D planar polygon, and finds their intersection. Note the polygon is
// treated as its boundary and interior, so the intersection may include both points and line segments.
@ -1860,9 +1891,11 @@ function _merge_segments(insegs,outsegs, eps, i=1) =
// Function: polygon_triangulate()
// Synopsis: Divide a polygon into triangles.
// Topics: Geometry, Triangulation
// See Also: vnf_triangulate()
// Usage:
// triangles = polygon_triangulate(poly, [ind], [error], [eps])
// Synopsis: Divide a polygon into triangles.
// Description:
// Given a simple polygon in 2D or 3D, triangulates it and returns a list
// of triples indexing into the polygon vertices. When the optional argument `ind` is
@ -2049,11 +2082,11 @@ function _none_inside(idxs,poly,p0,p1,p2,eps,i=0) =
// Function: is_polygon_clockwise()
// Usage:
// bool = is_polygon_clockwise(poly);
// Synopsis: Determine if a 2d polygon winds clockwise.
// Topics: Geometry, Polygons, Clockwise
// See Also: clockwise_polygon(), ccw_polygon(), reverse_polygon()
// Synopsis: Determine if a 2d polygon winds clockwise.
// Usage:
// bool = is_polygon_clockwise(poly);
// Description:
// Return true if the given 2D simple polygon is in clockwise order, false otherwise.
// Results for complex (self-intersecting) polygon are indeterminate.
@ -2076,11 +2109,11 @@ function is_polygon_clockwise(poly) =
// Function: clockwise_polygon()
// Synopsis: Return clockwise version of a polygon.
// Topics: Geometry, Polygons, Clockwise
// See Also: is_polygon_clockwise(), ccw_polygon(), reverse_polygon()
// Usage:
// newpoly = clockwise_polygon(poly);
// Topics: Geometry, Polygons, Clockwise
// Synopsis: Return clockwise version of a polygon.
// See Also: is_polygon_clockwise(), ccw_polygon(), reverse_polygon()
// Description:
// Given a 2D polygon path, returns the clockwise winding version of that path.
// Arguments:
@ -2091,11 +2124,11 @@ function clockwise_polygon(poly) =
// Function: ccw_polygon()
// Synopsis: Return counter-clockwise version of a polygon.
// Topics: Geometry, Polygons, Clockwise
// See Also: is_polygon_clockwise(), clockwise_polygon(), reverse_polygon()
// Usage:
// newpoly = ccw_polygon(poly);
// Synopsis: Return counter-clockwise version of a polygon.
// See Also: is_polygon_clockwise(), clockwise_polygon(), reverse_polygon()
// Topics: Geometry, Polygons, Clockwise
// Description:
// Given a 2D polygon poly, returns the counter-clockwise winding version of that poly.
// Arguments:
@ -2106,11 +2139,11 @@ function ccw_polygon(poly) =
// Function: reverse_polygon()
// Usage:
// newpoly = reverse_polygon(poly)
// Synopsis: Reverse winding direction of polygon.
// Topics: Geometry, Polygons, Clockwise
// See Also: is_polygon_clockwise(), ccw_polygon(), clockwise_polygon()
// Usage:
// newpoly = reverse_polygon(poly)
// Description:
// Reverses a polygon's winding direction, while still using the same start point.
// Arguments:
@ -2122,10 +2155,11 @@ function reverse_polygon(poly) =
// Function: reindex_polygon()
// Usage:
// newpoly = reindex_polygon(reference, poly);
// Synopsis: Adjust point indexing of polygon to minimize pointwise distance to a reference polygon.
// Topics: Geometry, Polygons
// See Also: reindex_polygon(), align_polygon(), are_polygons_equal()
// Usage:
// newpoly = reindex_polygon(reference, poly);
// Description:
// Rotates and possibly reverses the point order of a 2d or 3d polygon path to optimize its pairwise point
// association with a reference polygon. The two polygons must have the same number of vertices and be the same dimension.
@ -2177,10 +2211,11 @@ function reindex_polygon(reference, poly, return_error=false) =
// Function: align_polygon()
// Synopsis: Find best alignment of a 2d polygon to a reference 2d polygon over a set of transformations.
// Topics: Geometry, Polygons
// See Also: reindex_polygon(), align_polygon(), are_polygons_equal()
// Usage:
// newpoly = align_polygon(reference, poly, [angles], [cp], [tran], [return_ind]);
// Topics: Geometry, Polygons
// Synopsis: Find best alignment of a 2d polygon to a reference 2d polygon over a set of transformations.
// Description:
// Find the best alignment of a specified 2D polygon with a reference 2D polygon over a set of
// transformations. You can specify a list or range of angles and a centerpoint or you can
@ -2245,12 +2280,14 @@ function align_polygon(reference, poly, angles, cp, trans, return_ind=false) =
// Function: are_polygons_equal()
// Synopsis: Check if two polygons (not necessarily in the same point order) are equal.
// Topics: Geometry, Polygons, Comparators
// See Also: reindex_polygon(), align_polygon(), are_polygons_equal()
// Usage:
// bool = are_polygons_equal(poly1, poly2, [eps])
// Description:
// Returns true if poly1 and poly2 are the same polongs
// within given epsilon tolerance.
// Synopsis: Check if two polygons (not necessarily in the same point order) are equal.
// Arguments:
// poly1 = first polygon
// poly2 = second polygon
@ -2301,9 +2338,11 @@ function ___is_polygon_in_list(poly, polys, i) =
// Function: hull()
// Synopsis: Convex hull of a list of 2d or 3d points.
// Topics: Geometry, Hulling
// See Also: hull(), hull_points(), hull2d_path(), hull3d_faces()
// Usage:
// face_list_or_index_list = hull(points);
// Synopsis: Convex hull of a list of 2d or 3d points.
// Description:
// Takes a list of 2D or 3D points (but not both in the same list) and returns either the list of
// indexes into `points` that forms the 2D convex hull perimeter path, or the list of faces that
@ -2322,9 +2361,11 @@ function hull(points) =
// Module: hull_points()
// Synopsis: Convex hull of a list of 2d or 3d points.
// Topics: Geometry, Hulling
// See Also: hull(), hull_points(), hull2d_path(), hull3d_faces()
// Usage:
// hull_points(points, [fast]);
// Synopsis: Convex hull of a list of 2d or 3d points.
// Description:
// If given a list of 2D points, creates a 2D convex hull polygon that encloses all those points.
// If given a list of 3D points, creates a 3D polyhedron that encloses all the points. This should
@ -2380,13 +2421,15 @@ function _is_cw(a,b,c,all) =
// Function: hull2d_path()
// Synopsis: Convex hull of a list of 2d points.
// Topics: Geometry, Hulling
// See Also: hull(), hull_points(), hull2d_path(), hull3d_faces()
// Usage:
// index_list = hull2d_path(points,all)
// Description:
// Takes a list of arbitrary 2D points, and finds the convex hull polygon to enclose them.
// Returns a path as a list of indices into `points`.
// When all==true, returns extra points that are on edges of the hull.
// Synopsis: Convex hull of a list of 2d points.
// Arguments:
// points = list of 2d points to get the hull of.
// all = when true, includes all points on the edges of the convex hull. Default: false.
@ -2443,9 +2486,11 @@ function _hull_collinear(points) =
// Function: hull3d_faces()
// Synopsis: Convex hull of a list of 3d points.
// Topics: Geometry, Hulling
// See Also: hull(), hull_points(), hull2d_path(), hull3d_faces()
// Usage:
// faces = hull3d_faces(points)
// Synopsis: Convex hull of a list of 3d points.
// Description:
// Takes a list of arbitrary 3D points, and finds the convex hull polyhedron to enclose
// them. Returns a list of triangular faces, where each face is a list of indexes into the given `points`
@ -2555,10 +2600,11 @@ function _find_first_noncoplanar(plane, points, i=0) =
// Function: is_polygon_convex()
// Usage:
// bool = is_polygon_convex(poly, [eps]);
// Synopsis: Check if a polygon is convex.
// Topics: Geometry, Convexity, Test
// See Also: clockwise_polygon(), ccw_polygon()
// Usage:
// bool = is_polygon_convex(poly, [eps]);
// Description:
// Returns true if the given 2D or 3D polygon is convex.
// The result is meaningless if the polygon is not simple (self-crossing) or non coplanar.
@ -2601,12 +2647,11 @@ function is_polygon_convex(poly,eps=EPSILON) =
// Function: convex_distance()
// Usage:
// dist = convex_distance(points1, points2,eps);
// Synopsis: Compute distance between convex hull of two point lists.
// Topics: Geometry, Convexity, Distance
// See also:
// convex_collision(), hull()
// See also: convex_collision(), hull()
// Usage:
// dist = convex_distance(points1, points2,eps);
// Description:
// Returns the smallest distance between a point in convex hull of `points1`
// and a point in the convex hull of `points2`. All the points in the lists
@ -2661,12 +2706,12 @@ function _GJK_distance(points1, points2, eps=EPSILON, lbd, d, simplex=[]) =
// Function: convex_collision()
// Usage:
// bool = convex_collision(points1, points2, [eps]);
// Synopsis: Check whether the convex hulls of two point lists intersect.
// Topics: Geometry, Convexity, Collision, Intersection
// See also:
// convex_distance(), hull()
// Synopsis: Check whether the convex hulls of two point lists intersect.
// Usage:
// bool = convex_collision(points1, points2, [eps]);
// Description:
// Returns `true` if the convex hull of `points1` intersects the convex hull of `points2`
// otherwise, `false`.
@ -2812,10 +2857,10 @@ function _support_diff(p1,p2,d) =
// Section: Rotation Decoding
// Function: rot_decode()
// Usage:
// info = rot_decode(rotation,[long]); // Returns: [angle,axis,cp,translation]
// Synopsis: Extract axis and rotation angle from a rotation matrix.
// Topics: Affine, Matrices, Transforms
// Usage:
// info = rot_decode(rotation,[long]); // Returns: [angle,axis,cp,translation]
// Description:
// Given an input 3D rigid transformation operator (one composed of just rotations and translations) represented
// as a 4x4 matrix, compute the rotation and translation parameters of the operator. Returns a list of the