mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
Merge pull request #495 from RonaldoCMP/master
Review of geometry.scad for speed and minor other changes
This commit is contained in:
commit
b00547b834
8 changed files with 264 additions and 219 deletions
12
arrays.scad
12
arrays.scad
|
@ -42,6 +42,7 @@ function is_homogeneous(l, depth=10) =
|
|||
|
||||
function is_homogenous(l, depth=10) = is_homogeneous(l, depth);
|
||||
|
||||
|
||||
function _same_type(a,b, depth) =
|
||||
(depth==0) ||
|
||||
(is_undef(a) && is_undef(b)) ||
|
||||
|
@ -97,7 +98,6 @@ function select(list, start, end) =
|
|||
|
||||
|
||||
// Function: slice()
|
||||
// Topics: List Handling
|
||||
// Usage:
|
||||
// list = slice(list,s,e);
|
||||
// Description:
|
||||
|
@ -476,7 +476,7 @@ function reverse(x) =
|
|||
// l9 = list_rotate([1,2,3,4,5],6); // Returns: [2,3,4,5,1]
|
||||
function list_rotate(list,n=1) =
|
||||
assert(is_list(list)||is_string(list), "Invalid list or string.")
|
||||
assert(is_finite(n), "Invalid number")
|
||||
assert(is_int(n), "The rotation number should be integer")
|
||||
let (
|
||||
ll = len(list),
|
||||
n = ((n % ll) + ll) % ll,
|
||||
|
@ -1332,6 +1332,8 @@ function permutations(l,n=2) =
|
|||
// pairs = zip(a,b);
|
||||
// triples = zip(a,b,c);
|
||||
// quads = zip([LIST1,LIST2,LIST3,LIST4]);
|
||||
// Topics: List Handling, Iteration
|
||||
// See Also: zip_long()
|
||||
// Description:
|
||||
// Zips together two or more lists into a single list. For example, if you have two
|
||||
// lists [3,4,5], and [8,7,6], and zip them together, you get [[3,8],[4,7],[5,6]].
|
||||
|
@ -1357,6 +1359,8 @@ function zip(a,b,c) =
|
|||
// pairs = zip_long(a,b);
|
||||
// triples = zip_long(a,b,c);
|
||||
// quads = zip_long([LIST1,LIST2,LIST3,LIST4]);
|
||||
// Topics: List Handling, Iteration
|
||||
// See Also: zip()
|
||||
// Description:
|
||||
// Zips together two or more lists into a single list. For example, if you have two
|
||||
// lists [3,4,5], and [8,7,6], and zip them together, you get [[3,8],[4,7],[5,6]].
|
||||
|
@ -1526,7 +1530,6 @@ function subindex(M, idx) =
|
|||
// [[4,2], 91, false],
|
||||
// [6, [3,4], undef]];
|
||||
// submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]]
|
||||
|
||||
function submatrix(M,idx1,idx2) =
|
||||
[for(i=idx1) [for(j=idx2) M[i][j] ] ];
|
||||
|
||||
|
@ -1629,7 +1632,6 @@ function block_matrix(M) =
|
|||
assert(badrows==[], "Inconsistent or invalid input")
|
||||
bigM;
|
||||
|
||||
|
||||
// Function: diagonal_matrix()
|
||||
// Usage:
|
||||
// mat = diagonal_matrix(diag, <offdiag>);
|
||||
|
@ -1855,7 +1857,7 @@ function transpose(arr, reverse=false) =
|
|||
// A = matrix to test
|
||||
// eps = epsilon for comparing equality. Default: 1e-12
|
||||
function is_matrix_symmetric(A,eps=1e-12) =
|
||||
approx(A,transpose(A));
|
||||
approx(A,transpose(A), eps);
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
11
common.scad
11
common.scad
|
@ -205,7 +205,8 @@ function is_func(x) = version_num()>20210000 && is_function(x);
|
|||
// Description:
|
||||
// Tests whether input is a list of entries which all have the same list structure
|
||||
// and are filled with finite numerical data. You can optionally specify a required
|
||||
// list structure with the pattern argument. It returns `true` for the empty list.
|
||||
// list structure with the pattern argument.
|
||||
// It returns `true` for the empty list regardless the value of the `pattern`.
|
||||
// Arguments:
|
||||
// list = list to check
|
||||
// pattern = optional pattern required to match
|
||||
|
@ -293,7 +294,7 @@ function default(v,dflt=undef) = is_undef(v)? dflt : v;
|
|||
// v = The list whose items are being checked.
|
||||
// recursive = If true, sublists are checked recursively for defined values. The first sublist that has a defined item is returned.
|
||||
// Examples:
|
||||
// val = first_defined([undef,7,undef,true]); // Returns: 1
|
||||
// val = first_defined([undef,7,undef,true]); // Returns: 7
|
||||
function first_defined(v,recursive=false,_i=0) =
|
||||
_i<len(v) && (
|
||||
is_undef(v[_i]) || (
|
||||
|
@ -605,15 +606,15 @@ function segs(r) =
|
|||
|
||||
|
||||
// Module: no_children()
|
||||
// Topics: Error Checking
|
||||
// Usage:
|
||||
// no_children($children);
|
||||
// Topics: Error Checking
|
||||
// See Also: no_function(), no_module()
|
||||
// Description:
|
||||
// Assert that the calling module does not support children. Prints an error message to this effect and fails if children are present,
|
||||
// as indicated by its argument.
|
||||
// Arguments:
|
||||
// $children = number of children the module has.
|
||||
// See Also: no_function(), no_module()
|
||||
// Example:
|
||||
// module foo() {
|
||||
// no_children($children);
|
||||
|
@ -676,7 +677,7 @@ function _valstr(x) =
|
|||
// expected = The value that was expected.
|
||||
// info = Extra info to print out to make the error clearer.
|
||||
// Example:
|
||||
// assert_approx(1/3, 0.333333333333333, str("numer=",1,", demon=",3));
|
||||
// assert_approx(1/3, 0.333333333333333, str("number=",1,", demon=",3));
|
||||
module assert_approx(got, expected, info) {
|
||||
no_children($children);
|
||||
if (!approx(got, expected)) {
|
||||
|
|
153
geometry.scad
153
geometry.scad
|
@ -453,7 +453,7 @@ function segment_closest_point(seg,pt) =
|
|||
// Usage:
|
||||
// line_from_points(points, [fast], [eps]);
|
||||
// Description:
|
||||
// Given a list of 2 or more colinear points, returns a line containing them.
|
||||
// Given a list of 2 or more collinear points, returns a line containing them.
|
||||
// If `fast` is false and the points are coincident, then `undef` is returned.
|
||||
// if `fast` is true, then the collinearity test is skipped and a line passing through 2 distinct arbitrary points is returned.
|
||||
// Arguments:
|
||||
|
@ -889,21 +889,63 @@ function plane3pt_indexed(points, i1, i2, i3) =
|
|||
// plane_from_normal([0,0,1], [2,2,2]); // Returns the xy plane passing through the point (2,2,2)
|
||||
function plane_from_normal(normal, pt=[0,0,0]) =
|
||||
assert( is_matrix([normal,pt],2,3) && !approx(norm(normal),0),
|
||||
"Inputs `normal` and `pt` should 3d vectors/points and `normal` cannot be zero." )
|
||||
"Inputs `normal` and `pt` should be 3d vectors/points and `normal` cannot be zero." )
|
||||
concat(normal, normal*pt) / norm(normal);
|
||||
|
||||
|
||||
// Eigenvalues for a 3x3 symmetrical matrix in decreasing order
|
||||
// Based on: https://en.wikipedia.org/wiki/Eigenvalue_algorithm
|
||||
function _eigenvals_symm_3(M) =
|
||||
let( p1 = pow(M[0][1],2) + pow(M[0][2],2) + pow(M[1][2],2) )
|
||||
(p1<EPSILON)
|
||||
? -sort(-[ M[0][0], M[1][1], M[2][2] ]) // diagonal matrix: eigenvals in decreasing order
|
||||
: let( q = (M[0][0]+M[1][1]+M[2][2])/3,
|
||||
B = (M - q*ident(3)),
|
||||
dB = [B[0][0], B[1][1], B[2][2]],
|
||||
p2 = dB*dB + 2*p1,
|
||||
p = sqrt(p2/6),
|
||||
r = det3(B/p)/2,
|
||||
ph = acos(constrain(r,-1,1))/3,
|
||||
e1 = q + 2*p*cos(ph),
|
||||
e3 = q + 2*p*cos(ph+120),
|
||||
e2 = 3*q - e1 - e3 )
|
||||
[ e1, e2, e3 ];
|
||||
|
||||
|
||||
// the i-th normalized eigenvector of a 3x3 symmetrical matrix M from its eigenvalues
|
||||
// using Cayley–Hamilton theorem according to:
|
||||
// https://en.wikipedia.org/wiki/Eigenvalue_algorithm
|
||||
function _eigenvec_symm_3(M,evals,i=0) =
|
||||
let(
|
||||
I = ident(3),
|
||||
A = (M - evals[(i+1)%3]*I) * (M - evals[(i+2)%3]*I) ,
|
||||
k = max_index( [for(i=[0:2]) norm(A[i]) ])
|
||||
)
|
||||
norm(A[k])<EPSILON ? I[k] : A[k]/norm(A[k]);
|
||||
|
||||
|
||||
// finds the eigenvector corresponding to the smallest eigenvalue of the covariance matrix of a pointlist
|
||||
// returns the mean of the points, the eigenvector and the greatest eigenvalue
|
||||
function _covariance_evec_eval(points) =
|
||||
let( pm = sum(points)/len(points), // mean point
|
||||
Y = [ for(i=[0:len(points)-1]) points[i] - pm ],
|
||||
M = transpose(Y)*Y , // covariance matrix
|
||||
evals = _eigenvals_symm_3(M), // eigenvalues in decreasing order
|
||||
evec = _eigenvec_symm_3(M,evals,i=2) )
|
||||
[pm, evec, evals[0] ];
|
||||
|
||||
|
||||
// Function: plane_from_points()
|
||||
// Usage:
|
||||
// plane_from_points(points, <fast>, <eps>);
|
||||
// Description:
|
||||
// Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane,
|
||||
// that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1.
|
||||
// If `fast` is false and the points in the list are collinear or not coplanar, then `undef` is returned.
|
||||
// if `fast` is true, then the coplanarity test is skipped and a plane passing through 3 non-collinear arbitrary points is returned.
|
||||
// that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane and norm([A,B,C])=1.
|
||||
// If `fast` is false and the points in the list are collinear or not coplanar, then [] is returned.
|
||||
// If `fast` is true, the polygon coplanarity check is skipped and a best fitted plane is returned.
|
||||
// Arguments:
|
||||
// points = The list of points to find the plane of.
|
||||
// fast = If true, don't verify that all points in the list are coplanar. Default: false
|
||||
// fast = If true, don't verify the point coplanarity. Default: false
|
||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
||||
// Example(3D):
|
||||
// xyzpath = rot(45, v=[-0.3,1,0], p=path3d(star(n=6,id=70,d=100), 70));
|
||||
|
@ -914,17 +956,17 @@ function plane_from_normal(normal, pt=[0,0,0]) =
|
|||
function plane_from_points(points, fast=false, eps=EPSILON) =
|
||||
assert( is_path(points,dim=3), "Improper 3d point list." )
|
||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||
let(
|
||||
indices = noncollinear_triple(points,error=false)
|
||||
)
|
||||
indices==[] ? undef :
|
||||
let(
|
||||
p1 = points[indices[0]],
|
||||
p2 = points[indices[1]],
|
||||
p3 = points[indices[2]],
|
||||
plane = plane3pt(p1,p2,p3)
|
||||
)
|
||||
fast || points_on_plane(points,plane,eps=eps) ? plane : undef;
|
||||
len(points) == 3
|
||||
? let( plane = plane3pt(points[0],points[1],points[2]) )
|
||||
plane==[] ? [] : plane
|
||||
: let(
|
||||
covmix = _covariance_evec_eval(points),
|
||||
pm = covmix[0],
|
||||
evec = covmix[1],
|
||||
eval0 = covmix[2],
|
||||
plane = [ each evec, pm*evec] )
|
||||
!fast && _pointlist_greatest_distance(points,plane)>eps*eval0 ? undef :
|
||||
plane ;
|
||||
|
||||
|
||||
// Function: plane_from_polygon()
|
||||
|
@ -934,7 +976,8 @@ function plane_from_points(points, fast=false, eps=EPSILON) =
|
|||
// Given a 3D planar polygon, returns the normalized cartesian equation of its plane.
|
||||
// Returns [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1.
|
||||
// If not all the points in the polygon are coplanar, then [] is returned.
|
||||
// If `fast` is true, the polygon coplanarity check is skipped and the plane may not contain all polygon points.
|
||||
// If `fast` is false and the points in the list are collinear or not coplanar, then [] is returned.
|
||||
// if `fast` is true, then the coplanarity test is skipped and a plane passing through 3 non-collinear arbitrary points is returned.
|
||||
// Arguments:
|
||||
// poly = The planar 3D polygon to find the plane of.
|
||||
// fast = If true, doesn't verify that all points in the polygon are coplanar. Default: false
|
||||
|
@ -948,12 +991,11 @@ function plane_from_points(points, fast=false, eps=EPSILON) =
|
|||
function plane_from_polygon(poly, fast=false, eps=EPSILON) =
|
||||
assert( is_path(poly,dim=3), "Invalid polygon." )
|
||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||
let(
|
||||
poly = deduplicate(poly),
|
||||
n = polygon_normal(poly),
|
||||
plane = [n.x, n.y, n.z, n*poly[0]]
|
||||
)
|
||||
fast? plane: coplanar(poly,eps=eps)? plane: [];
|
||||
len(poly)==3 ? plane3pt(poly[0],poly[1],poly[2]) :
|
||||
let( triple = sort(noncollinear_triple(poly,error=false)) )
|
||||
triple==[] ? [] :
|
||||
let( plane = plane3pt(poly[triple[0]],poly[triple[1]],poly[triple[2]]))
|
||||
fast? plane: points_on_plane(poly, plane, eps=eps)? plane: [];
|
||||
|
||||
|
||||
// Function: plane_normal()
|
||||
|
@ -1252,9 +1294,17 @@ function coplanar(points, eps=EPSILON) =
|
|||
len(points)<=2 ? false
|
||||
: let( ip = noncollinear_triple(points,error=false,eps=eps) )
|
||||
ip == [] ? false :
|
||||
let( plane = plane3pt(points[ip[0]],points[ip[1]],points[ip[2]]),
|
||||
normal = point3d(plane) )
|
||||
max( points*normal ) - plane[3]< eps*norm(normal);
|
||||
let( plane = plane3pt(points[ip[0]],points[ip[1]],points[ip[2]]) )
|
||||
_pointlist_greatest_distance(points,plane) < eps;
|
||||
|
||||
|
||||
// the maximum distance from points to the plane
|
||||
function _pointlist_greatest_distance(points,plane) =
|
||||
let(
|
||||
normal = point3d(plane),
|
||||
pt_nrm = points*normal
|
||||
)
|
||||
abs(max( max(pt_nrm) - plane[3], -min(pt_nrm) + plane[3])) / norm(normal);
|
||||
|
||||
|
||||
// Function: points_on_plane()
|
||||
|
@ -1270,9 +1320,7 @@ function points_on_plane(points, plane, eps=EPSILON) =
|
|||
assert( _valid_plane(plane), "Invalid plane." )
|
||||
assert( is_matrix(points,undef,3) && len(points)>0, "Invalid pointlist." ) // using is_matrix it accepts len(points)==1
|
||||
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." )
|
||||
let( normal = point3d(plane),
|
||||
pt_nrm = points*normal )
|
||||
abs(max( max(pt_nrm) - plane[3], -min(pt_nrm)+plane[3]))< eps*norm(normal);
|
||||
_pointlist_greatest_distance(points,plane) < eps;
|
||||
|
||||
|
||||
// Function: in_front_of_plane()
|
||||
|
@ -1599,20 +1647,19 @@ function circle_circle_tangents(c1,r1,c2,r2,d1,d2) =
|
|||
|
||||
// Function: circle_line_intersection()
|
||||
// Usage:
|
||||
// isect = circle_line_intersection(c,r,line,<bounded>,<eps>);
|
||||
// isect = circle_line_intersection(c,d,line,<bounded>,<eps>);
|
||||
// isect = circle_line_intersection(c,<r|d>,<line>,<bounded>,<eps>);
|
||||
// Description:
|
||||
// Find intersection points between a 2d circle and a line, ray or segment specified by two points.
|
||||
// By default the line is unbounded.
|
||||
// Arguments:
|
||||
// c = center of circle
|
||||
// r = radius of circle
|
||||
// ---
|
||||
// d = diameter of circle
|
||||
// line = two points defining the unbounded line
|
||||
// bounded = false for unbounded line, true for a segment, or a vector [false,true] or [true,false] to specify a ray with the first or second end unbounded. Default: false
|
||||
// eps = epsilon used for identifying the case with one solution. Default: 1e-9
|
||||
// ---
|
||||
// d = diameter of circle
|
||||
function circle_line_intersection(c,r,line,d,bounded=false,eps=EPSILON) =
|
||||
function circle_line_intersection(c,r,d,line,bounded=false,eps=EPSILON) =
|
||||
let(r=get_radius(r=r,d=d,dflt=undef))
|
||||
assert(_valid_line(line,2), "Input 'line' is not a valid 2d line.")
|
||||
assert(is_vector(c,2), "Circle center must be a 2-vector")
|
||||
|
@ -1665,7 +1712,7 @@ function noncollinear_triple(points,error=true,eps=EPSILON) =
|
|||
n = (pb-pa)/nrm,
|
||||
distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)]
|
||||
)
|
||||
max(distlist)<eps
|
||||
max(distlist)<eps*nrm
|
||||
? assert(!error, "Cannot find three noncollinear points in pointlist.")
|
||||
[]
|
||||
: [0,b,max_index(distlist)];
|
||||
|
@ -1725,7 +1772,7 @@ function furthest_point(pt, points) =
|
|||
// area = polygon_area(poly);
|
||||
// Description:
|
||||
// Given a 2D or 3D planar polygon, returns the area of that polygon.
|
||||
// If the polygon is self-crossing, the results are undefined. For non-planar 3D polygon the result is undef.
|
||||
// If the polygon is self-crossing, the results are undefined. For non-planar 3D polygon the result is [].
|
||||
// When `signed` is true, a signed area is returned; a positive area indicates a clockwise polygon.
|
||||
// Arguments:
|
||||
// poly = Polygon to compute the area of.
|
||||
|
@ -1736,8 +1783,8 @@ function polygon_area(poly, signed=false) =
|
|||
len(poly[0])==2
|
||||
? let( total = sum([for(i=[1:1:len(poly)-2]) cross(poly[i]-poly[0],poly[i+1]-poly[0]) ])/2 )
|
||||
signed ? total : abs(total)
|
||||
: let( plane = plane_from_points(poly) )
|
||||
plane==undef? undef :
|
||||
: let( plane = plane_from_polygon(poly) )
|
||||
plane==[]? [] :
|
||||
let(
|
||||
n = plane_normal(plane),
|
||||
total = sum([
|
||||
|
@ -1746,8 +1793,8 @@ function polygon_area(poly, signed=false) =
|
|||
v1 = poly[i] - poly[0],
|
||||
v2 = poly[i+1] - poly[0]
|
||||
)
|
||||
cross(v1,v2) * n
|
||||
])/2
|
||||
cross(v1,v2)
|
||||
])* n/2
|
||||
)
|
||||
signed ? total : abs(total);
|
||||
|
||||
|
@ -1761,25 +1808,26 @@ function polygon_area(poly, signed=false) =
|
|||
// If the points are collinear an error is generated.
|
||||
// Arguments:
|
||||
// poly = Polygon to check.
|
||||
// eps = Tolerance for the collinearity test. Default: EPSILON.
|
||||
// Example:
|
||||
// is_convex_polygon(circle(d=50)); // Returns: true
|
||||
// is_convex_polygon(rot([50,120,30], p=path3d(circle(1,$fn=50)))); // Returns: true
|
||||
// Example:
|
||||
// spiral = [for (i=[0:36]) let(a=-i*10) (10+i)*[cos(a),sin(a)]];
|
||||
// is_convex_polygon(spiral); // Returns: false
|
||||
function is_convex_polygon(poly) =
|
||||
function is_convex_polygon(poly,eps=EPSILON) =
|
||||
assert(is_path(poly), "The input should be a 2D or 3D polygon." )
|
||||
let( lp = len(poly),
|
||||
p0 = poly[0] )
|
||||
assert( lp>=3 , "A polygon must have at least 3 points" )
|
||||
let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] )
|
||||
len(p0)==2
|
||||
? assert( !approx(max(crosses)) && !approx(min(crosses)), "The points are collinear" )
|
||||
? assert( !approx(sqrt(max(max(crosses),-min(crosses))),eps), "The points are collinear" )
|
||||
min(crosses) >=0 || max(crosses)<=0
|
||||
: let( prod = crosses*sum(crosses),
|
||||
minc = min(prod),
|
||||
maxc = max(prod) )
|
||||
assert( !approx(maxc-minc), "The points are collinear" )
|
||||
assert( !approx(sqrt(max(maxc,-minc)),eps), "The points are collinear" )
|
||||
minc>=0 || maxc<=0;
|
||||
|
||||
|
||||
|
@ -2008,7 +2056,7 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
|
|||
// poly = The list of 2D path points for the perimeter of the polygon.
|
||||
function polygon_is_clockwise(poly) =
|
||||
assert(is_path(poly,dim=2), "Input should be a 2d path")
|
||||
polygon_area(poly, signed=true)<0;
|
||||
polygon_area(poly, signed=true)<-EPSILON;
|
||||
|
||||
|
||||
// Function: clockwise_polygon()
|
||||
|
@ -2052,19 +2100,16 @@ function reverse_polygon(poly) =
|
|||
// n = polygon_normal(poly);
|
||||
// Description:
|
||||
// Given a 3D planar polygon, returns a unit-length normal vector for the
|
||||
// clockwise orientation of the polygon. If the polygon points are collinear, returns `undef`.
|
||||
// clockwise orientation of the polygon. If the polygon points are collinear, returns [].
|
||||
// It doesn't check for coplanarity.
|
||||
// Arguments:
|
||||
// poly = The list of 3D path points for the perimeter of the polygon.
|
||||
function polygon_normal(poly) =
|
||||
assert(is_path(poly,dim=3), "Invalid 3D polygon." )
|
||||
let(
|
||||
poly = cleanup_path(poly),
|
||||
p0 = poly[0],
|
||||
n = sum([
|
||||
for (i=[1:1:len(poly)-2])
|
||||
cross(poly[i+1]-p0, poly[i]-p0)
|
||||
])
|
||||
) unit(n,undef);
|
||||
len(poly)==3 ? point3d(plane3pt(poly[0],poly[1],poly[2])) :
|
||||
let( triple = sort(noncollinear_triple(poly,error=false)) )
|
||||
triple==[] ? [] :
|
||||
point3d(plane3pt(poly[triple[0]],poly[triple[1]],poly[triple[2]])) ;
|
||||
|
||||
|
||||
function _split_polygon_at_x(poly, x) =
|
||||
|
|
|
@ -985,10 +985,8 @@ function determinant(M) =
|
|||
function is_matrix(A,m,n,square=false) =
|
||||
is_list(A)
|
||||
&& (( is_undef(m) && len(A) ) || len(A)==m)
|
||||
&& is_list(A[0])
|
||||
&& (( is_undef(n) && len(A[0]) ) || len(A[0])==n)
|
||||
&& (!square || len(A) == len(A[0]))
|
||||
&& is_vector(A[0])
|
||||
&& is_vector(A[0],n)
|
||||
&& is_consistent(A);
|
||||
|
||||
|
||||
|
|
|
@ -197,8 +197,8 @@ module test_plane_from_polygon(){
|
|||
poly1 = [ rands(-1,1,3), rands(-1,1,3)+[2,0,0], rands(-1,1,3)+[0,2,2] ];
|
||||
poly2 = concat(poly1, [sum(poly1)/3] );
|
||||
info = info_str([["poly1 = ",poly1],["poly2 = ",poly2]]);
|
||||
assert_std(plane_from_polygon(poly1),plane3pt(poly1[0],poly1[1],poly1[2]),info);
|
||||
assert_std(plane_from_polygon(poly2),plane3pt(poly1[0],poly1[1],poly1[2]),info);
|
||||
assert_approx(plane_from_polygon(poly1),plane3pt(poly1[0],poly1[1],poly1[2]),info);
|
||||
assert_approx(plane_from_polygon(poly2),plane3pt(poly1[0],poly1[1],poly1[2]),info);
|
||||
}
|
||||
*test_plane_from_polygon();
|
||||
|
||||
|
@ -208,8 +208,7 @@ module test_plane_from_normal(){
|
|||
displ = normal*point;
|
||||
info = info_str([["normal = ",normal],["point = ",point],["displ = ",displ]]);
|
||||
assert_approx(plane_from_normal(normal,point)*[each point,-1],0,info);
|
||||
assert_std(plane_from_normal(normal,point),normalize_plane([each normal,displ]),info);
|
||||
assert_std(plane_from_normal([1,1,1],[1,2,3]),[0.57735026919,0.57735026919,0.57735026919,3.46410161514]);
|
||||
assert_approx(plane_from_normal([1,1,1],[1,2,3]),[0.57735026919,0.57735026919,0.57735026919,3.46410161514]);
|
||||
}
|
||||
*test_plane_from_normal();
|
||||
|
||||
|
@ -680,23 +679,23 @@ module test_triangle_area() {
|
|||
|
||||
|
||||
module test_plane3pt() {
|
||||
assert_std(plane3pt([0,0,20], [0,10,10], [0,0,0]), [1,0,0,0]);
|
||||
assert_std(plane3pt([2,0,20], [2,10,10], [2,0,0]), [1,0,0,2]);
|
||||
assert_std(plane3pt([0,0,0], [10,0,10], [0,0,20]), [0,1,0,0]);
|
||||
assert_std(plane3pt([0,2,0], [10,2,10], [0,2,20]), [0,1,0,2]);
|
||||
assert_std(plane3pt([0,0,0], [10,10,0], [20,0,0]), [0,0,1,0]);
|
||||
assert_std(plane3pt([0,0,2], [10,10,2], [20,0,2]), [0,0,1,2]);
|
||||
assert_approx(plane3pt([0,0,20], [0,10,10], [0,0,0]), [1,0,0,0]);
|
||||
assert_approx(plane3pt([2,0,20], [2,10,10], [2,0,0]), [1,0,0,2]);
|
||||
assert_approx(plane3pt([0,0,0], [10,0,10], [0,0,20]), [0,1,0,0]);
|
||||
assert_approx(plane3pt([0,2,0], [10,2,10], [0,2,20]), [0,1,0,2]);
|
||||
assert_approx(plane3pt([0,0,0], [10,10,0], [20,0,0]), [0,0,1,0]);
|
||||
assert_approx(plane3pt([0,0,2], [10,10,2], [20,0,2]), [0,0,1,2]);
|
||||
}
|
||||
*test_plane3pt();
|
||||
|
||||
module test_plane3pt_indexed() {
|
||||
pts = [ [0,0,0], [10,0,0], [0,10,0], [0,0,10] ];
|
||||
s13 = sqrt(1/3);
|
||||
assert_std(plane3pt_indexed(pts, 0,3,2), [1,0,0,0]);
|
||||
assert_std(plane3pt_indexed(pts, 0,2,3), [-1,0,0,0]);
|
||||
assert_std(plane3pt_indexed(pts, 0,1,3), [0,1,0,0]);
|
||||
assert_std(plane3pt_indexed(pts, 0,3,1), [0,-1,0,0]);
|
||||
assert_std(plane3pt_indexed(pts, 0,2,1), [0,0,1,0]);
|
||||
assert_approx(plane3pt_indexed(pts, 0,3,2), [1,0,0,0]);
|
||||
assert_approx(plane3pt_indexed(pts, 0,2,3), [-1,0,0,0]);
|
||||
assert_approx(plane3pt_indexed(pts, 0,1,3), [0,1,0,0]);
|
||||
assert_approx(plane3pt_indexed(pts, 0,3,1), [0,-1,0,0]);
|
||||
assert_approx(plane3pt_indexed(pts, 0,2,1), [0,0,1,0]);
|
||||
assert_approx(plane3pt_indexed(pts, 0,1,2), [0,0,-1,0]);
|
||||
assert_approx(plane3pt_indexed(pts, 3,2,1), [s13,s13,s13,10*s13]);
|
||||
assert_approx(plane3pt_indexed(pts, 1,2,3), [-s13,-s13,-s13,-10*s13]);
|
||||
|
@ -715,12 +714,12 @@ module test_plane_from_points() {
|
|||
|
||||
|
||||
module test_plane_normal() {
|
||||
assert_std(plane_normal(plane3pt([0,0,20], [0,10,10], [0,0,0])), [1,0,0]);
|
||||
assert_std(plane_normal(plane3pt([2,0,20], [2,10,10], [2,0,0])), [1,0,0]);
|
||||
assert_std(plane_normal(plane3pt([0,0,0], [10,0,10], [0,0,20])), [0,1,0]);
|
||||
assert_std(plane_normal(plane3pt([0,2,0], [10,2,10], [0,2,20])), [0,1,0]);
|
||||
assert_std(plane_normal(plane3pt([0,0,0], [10,10,0], [20,0,0])), [0,0,1]);
|
||||
assert_std(plane_normal(plane3pt([0,0,2], [10,10,2], [20,0,2])), [0,0,1]);
|
||||
assert_approx(plane_normal(plane3pt([0,0,20], [0,10,10], [0,0,0])), [1,0,0]);
|
||||
assert_approx(plane_normal(plane3pt([2,0,20], [2,10,10], [2,0,0])), [1,0,0]);
|
||||
assert_approx(plane_normal(plane3pt([0,0,0], [10,0,10], [0,0,20])), [0,1,0]);
|
||||
assert_approx(plane_normal(plane3pt([0,2,0], [10,2,10], [0,2,20])), [0,1,0]);
|
||||
assert_approx(plane_normal(plane3pt([0,0,0], [10,10,0], [20,0,0])), [0,0,1]);
|
||||
assert_approx(plane_normal(plane3pt([0,0,2], [10,10,2], [20,0,2])), [0,0,1]);
|
||||
}
|
||||
*test_plane_normal();
|
||||
|
||||
|
@ -780,7 +779,7 @@ module test_coplanar() {
|
|||
assert(coplanar([ [5,5,1],[0,0,0],[-1,-1,1] ]) == true);
|
||||
assert(coplanar([ [0,0,0],[1,0,1],[1,1,1], [0,1,2] ]) == false);
|
||||
assert(coplanar([ [0,0,0],[1,0,1],[1,1,2], [0,1,1] ]) == true);
|
||||
}
|
||||
}
|
||||
*test_coplanar();
|
||||
|
||||
|
||||
|
@ -836,7 +835,9 @@ module test_cleanup_path() {
|
|||
module test_polygon_area() {
|
||||
assert(approx(polygon_area([[1,1],[-1,1],[-1,-1],[1,-1]]), 4));
|
||||
assert(approx(polygon_area(circle(r=50,$fn=1000),signed=true), -PI*50*50, eps=0.1));
|
||||
assert(approx(polygon_area(rot([13,27,75],p=path3d(circle(r=50,$fn=1000),fill=23)),signed=true), PI*50*50, eps=0.1));
|
||||
assert(approx(polygon_area(rot([13,27,75],
|
||||
p=path3d(circle(r=50,$fn=1000),fill=23)),
|
||||
signed=true), -PI*50*50, eps=0.1));
|
||||
}
|
||||
*test_polygon_area();
|
||||
|
||||
|
@ -846,6 +847,7 @@ module test_is_convex_polygon() {
|
|||
assert(is_convex_polygon(circle(r=50,$fn=1000)));
|
||||
assert(is_convex_polygon(rot([50,120,30], p=path3d(circle(1,$fn=50)))));
|
||||
assert(!is_convex_polygon([[1,1],[0,0],[-1,1],[-1,-1],[1,-1]]));
|
||||
assert(!is_convex_polygon([for (i=[0:36]) let(a=-i*10) (10+i)*[cos(a),sin(a)]])); // spiral
|
||||
}
|
||||
*test_is_convex_polygon();
|
||||
|
||||
|
|
|
@ -74,7 +74,8 @@ module test_vnf_centroid() {
|
|||
assert_approx(vnf_centroid(cube(100, anchor=TOP)), [0,0,-50]);
|
||||
assert_approx(vnf_centroid(sphere(d=100, anchor=CENTER, $fn=36)), [0,0,0]);
|
||||
assert_approx(vnf_centroid(sphere(d=100, anchor=BOT, $fn=36)), [0,0,50]);
|
||||
}
|
||||
ellipse = xscale(2, p=circle($fn=24, r=3));
|
||||
assert_approx(vnf_centroid(path_sweep(pentagon(r=1), path3d(ellipse), closed=true)),[0,0,0]);}
|
||||
test_vnf_centroid();
|
||||
|
||||
|
||||
|
|
16
vnf.scad
16
vnf.scad
|
@ -450,18 +450,13 @@ function vnf_volume(vnf) =
|
|||
// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
|
||||
// no holes; otherwise the results are undefined.
|
||||
|
||||
// Divide the solid up into tetrahedra with the origin as one vertex. The centroid of a tetrahedron is the average of its vertices.
|
||||
// Divide the solid up into tetrahedra with the origin as one vertex.
|
||||
// The centroid of a tetrahedron is the average of its vertices.
|
||||
// The centroid of the total is the volume weighted average.
|
||||
function vnf_centroid(vnf) =
|
||||
assert(is_vnf(vnf) && len(vnf[0])!=0 )
|
||||
let(
|
||||
verts = vnf[0],
|
||||
vol = sum([
|
||||
for(face=vnf[1], j=[1:1:len(face)-2]) let(
|
||||
v0 = verts[face[0]],
|
||||
v1 = verts[face[j]],
|
||||
v2 = verts[face[j+1]]
|
||||
) cross(v2,v1)*v0
|
||||
]),
|
||||
pos = sum([
|
||||
for(face=vnf[1], j=[1:1:len(face)-2]) let(
|
||||
v0 = verts[face[0]],
|
||||
|
@ -469,10 +464,11 @@ function vnf_centroid(vnf) =
|
|||
v2 = verts[face[j+1]],
|
||||
vol = cross(v2,v1)*v0
|
||||
)
|
||||
(v0+v1+v2)*vol
|
||||
[ vol, (v0+v1+v2)*vol ]
|
||||
])
|
||||
)
|
||||
pos/vol/4;
|
||||
assert(!approx(pos[0],0, EPSILON), "The vnf has self-intersections.")
|
||||
pos[1]/pos[0]/4;
|
||||
|
||||
|
||||
function _triangulate_planar_convex_polygons(polys) =
|
||||
|
|
Loading…
Reference in a new issue