Fixed bug with snap_pin_socket, tweaked dovetail docs.

Fixed offset bugs, one affecting regions and one affecting paths of length2.
This commit is contained in:
Adrian Mariano 2021-01-06 16:45:24 -05:00
parent a5945971ae
commit b12565f85c
2 changed files with 25 additions and 24 deletions

View file

@ -419,7 +419,7 @@ module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=unde
// Module: dovetail()
//
// Usage:
// dovetail(l|length, h|height, w|width, slope|angle, taper|back_width, [chamfer], [r|radius], [round], [$slop])
// dovetail(gender, l|length, h|height, w|width, [slope|angle], [taper|back_width], [chamfer], [r|radius], [round], [$slop])
//
// Description:
// Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together.
@ -427,11 +427,13 @@ module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=unde
// it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better
// printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears
// parallel to the Y axis and projecting upwards, so in its default orientation it will slide together with a translation
// in the positive Y direction. The default anchor for dovetails is BOTTOM; the default orientation depends on the gender,
// with male dovetails oriented UP and female ones DOWN.
// in the positive Y direction. The gender determines whether the shape is meant to be added to your model or
// differenced, and it also changes the anchor and orientation. The default anchor for dovetails is BOTTOM;
// the default orientation depends on the gender, with male dovetails oriented UP and female ones DOWN.
//
// Arguments:
// gender = A string, "male" or "female", to specify the gender of the dovetail.
// gender = A string, "male" or "female", to specify the gender of the dovetail.
// ---
// l / length = Length of the dovetail (amount the joint slides during assembly)
// h / height = Height of the dovetail
// w / width = Width (at the wider, top end) of the dovetail before tapering
@ -487,9 +489,9 @@ module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=unde
// diff("remove")
// cuboid([50,30,10])
// attach(TOP) dovetail("female", length=50, width=18, height=4, back_width=15, spin=90,$tags="remove");
// Example: A series of dovtails
// Example: A series of dovtails forming a tail board, with the inside of the joint up. A standard wood joint would have a zero taper.
// cuboid([50,30,10])
// attach(BACK) xcopies(10,5) dovetail("male", length=10, width=7, height=4);
// attach(BACK) xcopies(10,5) dovetail("male", length=10, width=7, taper=4, height=4);
// Example: Mating pin board for a right angle joint. Note that the anchor method and use of `spin` ensures that the joint works even with a taper.
// diff("remove")
// cuboid([50,30,10])
@ -765,8 +767,7 @@ module snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fi
{
down(lPin/2)
intersection() {
if (fixed)
cube([3 * (radius + snap), radius * sqrt(2), 3 * lPin + 3 * radius], center = true);
cube([3 * (radius + snap), fixed ? radius * sqrt(2) : 3*(radius+snap), 3 * lPin + 3 * radius], center = true);
union() {
_pin_shaft(radius,lStraight,snap,1,1,nub_depth,pointed);
if (fins)

View file

@ -533,7 +533,7 @@ function _offset_region(
difference(_acc, [
offset(
paths[_i].y,
r=-r, delta=-delta, chamfer=chamfer, closed=closed,
r=u_mul(-1,r), delta=u_mul(-1,delta), chamfer=chamfer, closed=closed,
maxstep=maxstep, check_valid=check_valid, quality=quality,
return_faces=return_faces, firstface_index=firstface_index,
flip_faces=flip_faces
@ -547,11 +547,14 @@ function _offset_region(
// Function: offset()
//
// Usage:
// offsetpath = offset(path, [r|delta], [chamfer], [closed], [check_valid], [quality])
// path_faces = offset(path, return_faces=true, [r|delta], [chamfer], [closed], [check_valid], [quality], [firstface_index], [flip_faces])
// Description:
// Takes an input path and returns a path offset by the specified amount. As with the built-in
// offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with
// corners. Positive offsets shift the path to the left (relative to the direction of the path).
// corners. If you used `delta` you can set `chamfer` to true to get chamfers.
// Positive offsets shift the path to the left (relative to the direction of the path).
// .
// When offsets shrink the path, segments cross and become invalid. By default `offset()` checks
// for this situation. To test validity the code checks that segments have distance larger than (r
@ -570,6 +573,7 @@ function _offset_region(
// value is a list: [offset_path, face_list].
// Arguments:
// path = the path to process. A list of 2d points.
// ---
// r = offset radius. Distance to offset. Will round over corners.
// delta = offset distance. Distance to offset with pointed corners.
// chamfer = chamfer corners when you specify `delta`. Default: false
@ -643,7 +647,7 @@ function offset(
maxstep=0.1, closed=false, check_valid=true,
quality=1, return_faces=false, firstface_index=0,
flip_faces=false
) =
) = echo(path=path)
is_region(path)? (
assert(!return_faces, "return_faces not supported for regions.")
let(
@ -687,23 +691,19 @@ function offset(
(len(sharpcorners)==2 && !closed) ||
all_defined(select(sharpcorners,closed?0:1,-1))
)
assert(parallelcheck, "Path turns back on itself (180 deg turn)")
assert(parallelcheck, "Path contains sequential parallel segments (either 180 deg turn or 0 deg turn")
let(
// This is a boolean array that indicates whether a corner is an outside or inside corner
// For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward
// If either side turns back it is an inside corner---must check both.
// Outside corners can get rounded (if r is specified and there is space to round them)
outsidecorner = [
for(i=[0:len(goodsegs)-1]) let(
prevseg=select(goodsegs,i-1)
) (
(goodsegs[i][1]-goodsegs[i][0]) *
(goodsegs[i][0]-sharpcorners[i]) > 0
) && (
(prevseg[1]-prevseg[0]) *
(sharpcorners[i]-prevseg[1]) > 0
)
],
outsidecorner = len(sharpcorners)==2 ? [false,false]
:
[for(i=[0:len(goodsegs)-1])
let(prevseg=select(goodsegs,i-1))
(goodsegs[i][1]-goodsegs[i][0]) * (goodsegs[i][0]-sharpcorners[i]) > 0
&& (prevseg[1]-prevseg[0]) * (sharpcorners[i]-prevseg[1]) > 0
],
steps = is_def(delta) ? [] : [
for(i=[0:len(goodsegs)-1])
r==0 ? 0 :