diff --git a/affine.scad b/affine.scad index 5696cc6..462ae1f 100644 --- a/affine.scad +++ b/affine.scad @@ -467,6 +467,48 @@ function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][ +// Function: rot_decode() +// Usage: +// [angle,axis,cp,translation] = rot_decode(rotation) +// Description: +// Given an input 3d rigid transformation operator (one composed of just rotations and translations) +// represented as a 4x4 matrix, compute the rotation and translation parameters of the operator. +// Returns a list of the four parameters, the angle, in the interval [0,180], the rotation axis +// as a unit vector, a centerpoint for the rotation, and a translation. If you set `parms=rot_decode(rotation)` +// then the transformation can be reconstructed from parms as `move(parms[3])*rot(a=parms[0],v=parms[1],cp=parms[2])`. +// This decomposition makes it possible to perform interpolation. If you construct a transformation using `rot` +// the decoding may flip the axis (if you gave an angle outside of [0,180]). The returned axis will be a unit vector, +// and the centerpoint lies on the plane through the origin that is perpendicular to the axis. It may be different +// than the centerpoint you used to construct the transformation. +// Example: +// rot_decode(rot(45)); // Returns [45,[0,0,1], [0,0,0], [0,0,0]] +// rot_decode(rot(a=37, v=[1,2,3], cp=[4,3,-7]))); // Returns [37, [0.26, 0.53, 0.80], [4.8, 4.6, -4.6], [0,0,0]] +// rot_decode(left(12)*xrot(-33)); // Returns [33, [-1,0,0], [0,0,0], [-12,0,0]] +// rot_decode(translate([3,4,5])); // Returns [0, [0,0,1], [0,0,0], [3,4,5]] +function rot_decode(M) = + assert(is_matrix(M,4,4) && M[3]==[0,0,0,1], "Input matrix must be a 4x4 matrix representing a 3d transformation") + let(R = submatrix(M,[0:2],[0:2])) + assert(approx(det3(R),1) && approx(norm_fro(R * transpose(R)-ident(3)),0),"Input matrix is not a rotation") + let( + translation = [for(row=[0:2]) M[row][3]], // translation vector + largest = max_index([R[0][0], R[1][1], R[2][2]]), + axis_matrix = R + transpose(R) - (matrix_trace(R)-1)*ident(3), // Each row is on the rotational axis + // Construct quaternion q = c * [x sin(theta/2), y sin(theta/2), z sin(theta/2), cos(theta/2)] + q_im = axis_matrix[largest], + q_re = R[(largest+2)%3][(largest+1)%3] - R[(largest+1)%3][(largest+2)%3], + c_sin = norm(q_im), // c * sin(theta/2) for some c + c_cos = abs(q_re) // c * cos(theta/2) + ) + approx(c_sin,0) ? [0,[0,0,1],[0,0,0],translation] : + let( + angle = 2*atan2(c_sin, c_cos), // This is supposed to be more accurate than acos or asin + axis = (q_re>=0 ? 1:-1)*q_im/c_sin, + tproj = translation - (translation*axis)*axis, // Translation perpendicular to axis determines centerpoint + cp = (tproj + cross(axis,tproj)*c_cos/c_sin)/2 + ) + [angle, axis, cp, (translation*axis)*axis]; + + // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap diff --git a/math.scad b/math.scad index 0c847b8..c0ac6ab 100644 --- a/math.scad +++ b/math.scad @@ -904,6 +904,16 @@ function norm_fro(A) = norm(flatten(A)); +// Function: matrix_trace() +// Usage: +// matrix_trace(M) +// Description: +// Computes the trace of a square matrix, the sum of the entries on the diagonal. +function matrix_trace(M) = + assert(is_matrix(M,square=true), "Input to trace must be a square matrix") + [for(i=[0:1:len(M)-1])1] * [for(i=[0:1:len(M)-1]) M[i][i]]; + + // Section: Comparisons and Logic // Function: all_zero() diff --git a/tests/test_affine.scad b/tests/test_affine.scad index a759b56..b9a4e49 100644 --- a/tests/test_affine.scad +++ b/tests/test_affine.scad @@ -252,5 +252,34 @@ module test_apply_list() { test_apply_list(); +module test_rot_decode() { + Tlist = [ + rot(37), + xrot(49), + yrot(88), + rot(37,v=[1,3,3]), + rot(41,v=[2,-3,4]), + rot(180), + xrot(180), + yrot(180), + rot(180, v=[3,2,-5], cp=[3,5,18]), + rot(0.1, v=[1,2,3]), + rot(-47,v=[3,4,5],cp=[9,3,4]), + rot(197,v=[13,4,5],cp=[9,-3,4]), + move([3,4,5]), + move([3,4,5]) * rot(a=56, v=[5,3,-3], cp=[2,3,4]), + ident(4) + ]; + errlist = [for(T = Tlist) + let( + parm = rot_decode(T), + restore = move(parm[3])*rot(a=parm[0],v=parm[1],cp=parm[2]) + ) + norm_fro(restore-T)]; + assert(max(errlist)<1e-13); +} +test_rot_decode(); + + // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap diff --git a/tests/test_math.scad b/tests/test_math.scad index 9fb7c65..824098a 100644 --- a/tests/test_math.scad +++ b/tests/test_math.scad @@ -550,6 +550,13 @@ module test_determinant() { test_determinant(); +module test_matrix_trace() { + M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ]; + assert_equal(matrix_trace(M), 6-2+7+1); +} +test_matrix_trace(); + + // Logic