mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
Merge pull request #493 from adrianVmariano/master
Fix problem with face vertex order in polyhedra.scad
This commit is contained in:
commit
b3ce92a9be
1 changed files with 33 additions and 14 deletions
|
@ -118,6 +118,7 @@ function _unique_groups(m) = [
|
|||
// * `"great dodecahedron"`
|
||||
// * `"small stellated dodecahedron"`
|
||||
// * `"great stellated dodecahedron"`
|
||||
// * `"small triambic icosahedron"`
|
||||
//
|
||||
// Arguments:
|
||||
// name = Name of polyhedron to create.
|
||||
|
@ -147,7 +148,7 @@ function _unique_groups(m) = [
|
|||
// Side Effects:
|
||||
// `$faceindex` - Index number of the face
|
||||
// `$face` - Coordinates of the face (2d if rotate_children==true, 3d if not)
|
||||
// `$center` - Polyhedron center in the child coordinate system
|
||||
// `$center` - Face center in the child coordinate system
|
||||
//
|
||||
// Examples: All of the available polyhedra by name in their native orientation
|
||||
// regular_polyhedron("tetrahedron", facedown=false);
|
||||
|
@ -185,6 +186,7 @@ function _unique_groups(m) = [
|
|||
// regular_polyhedron("great dodecahedron");
|
||||
// regular_polyhedron("small stellated dodecahedron");
|
||||
// regular_polyhedron("great stellated dodecahedron");
|
||||
// regular_polyhedron("small triambic icosahedron");
|
||||
// Example: Third Archimedean solid
|
||||
// regular_polyhedron(type="archimedean", index=2);
|
||||
// Example(Med): Solids that have 8 or 10 vertex faces
|
||||
|
@ -275,6 +277,10 @@ function _unique_groups(m) = [
|
|||
// %sphere(r=.98);
|
||||
// regular_polyhedron("pentagonal hexecontahedron", or=1,facedown=false);
|
||||
// }
|
||||
// Example: Stellate an Archimedian solid, which has mixed faces
|
||||
// regular_polyhedron("truncated icosahedron",stellate=1.5,or=1);
|
||||
// Example: Stellate a Catalan solid where faces are not regular
|
||||
// regular_polyhedron("triakis tetrahedron",stellate=0.5,or=1);
|
||||
module regular_polyhedron(
|
||||
name=undef,
|
||||
index=undef,
|
||||
|
@ -330,20 +336,19 @@ module regular_polyhedron(
|
|||
}
|
||||
}
|
||||
}
|
||||
translate(translation)
|
||||
if ($children>0) {
|
||||
maxrange = repeat ? len(faces)-1 : $children-1;
|
||||
for(i=[0:1:maxrange]) {
|
||||
// Would like to orient so an edge (longest edge?) is parallel to x axis
|
||||
facepts = move(translation, p=select(scaled_points, faces[i]));
|
||||
center = mean(facepts);
|
||||
rotatedface = rot(from=face_normals[i], to=[0,0,1], p=move(-center, p=facepts));
|
||||
clockwise = sortidx([for(pt=rotatedface) -atan2(pt.y,pt.x)]);
|
||||
$face = rotate_children?
|
||||
path2d(select(rotatedface,clockwise)) :
|
||||
select(move(-center,p=facepts), clockwise);
|
||||
facepts = select(scaled_points, faces[i]);
|
||||
$center = -mean(facepts);
|
||||
cfacepts = move($center, p=facepts);
|
||||
$face = rotate_children
|
||||
? path2d(rot(from=face_normals[i], to=[0,0,1], p=cfacepts))
|
||||
: cfacepts;
|
||||
$faceindex = i;
|
||||
$center = -translation-center;
|
||||
translate(center)
|
||||
translate(-$center)
|
||||
if (rotate_children) {
|
||||
rot(from=[0,0,1], to=face_normals[i])
|
||||
children(i % $children);
|
||||
|
@ -537,6 +542,7 @@ _stellated_polyhedra_ = [
|
|||
["great dodecahedron", "icosahedron", -sqrt(5/3-PHI)],
|
||||
["small stellated dodecahedron", "dodecahedron", sqrt((5+2*sqrt(5))/5)],
|
||||
["great stellated dodecahedron", "icosahedron", sqrt(2/3+PHI)],
|
||||
["small triambic icosahedron", "icosahedron", sqrt(3/5) - 1/sqrt(3)]
|
||||
];
|
||||
|
||||
|
||||
|
@ -699,7 +705,7 @@ function regular_polyhedron_info(
|
|||
face_normals,
|
||||
radius_scale*entry[in_radius]
|
||||
] :
|
||||
info == "vnf" ? [move(translation,p=scaled_points), stellate ? faces : face_triangles] :
|
||||
info == "vnf" ? [move(translation,p=scaled_points), faces] :
|
||||
info == "vertices" ? move(translation,p=scaled_points) :
|
||||
info == "faces" ? faces :
|
||||
info == "face normals" ? face_normals :
|
||||
|
@ -770,15 +776,28 @@ function _facenormal(pts, face) = unit(cross(pts[face[2]]-pts[face[0]], pts[face
|
|||
|
||||
// hull() function returns triangulated faces. This function identifies the vertices that belong to each face
|
||||
// by grouping together the face triangles that share normal vectors. The output gives the face polygon
|
||||
// point indices in arbitrary order (not usable as input to a polygon call) and a normal vector.
|
||||
// point indices in arbitrary order (not usable as input to a polygon call) and a normal vector. Finally
|
||||
// the faces are ordered based on angle with their center (will always give a valid order for convex polygons).
|
||||
// Final return is [ordered_faces, facenormals] where the first is a list of indices into the point list
|
||||
// and the second is a list of vectors.
|
||||
|
||||
function _full_faces(pts,faces) =
|
||||
let(
|
||||
normals = [for(face=faces) quant(_facenormal(pts,face),1e-12)],
|
||||
groups = _unique_groups(normals),
|
||||
faces = [for(entry=groups) unique(flatten(select(faces, entry)))],
|
||||
facenormals = [for(entry=groups) normals[entry[0]]]
|
||||
) [faces, facenormals];
|
||||
facenormals = [for(entry=groups) normals[entry[0]]],
|
||||
ordered_faces = [
|
||||
for(i=idx(faces))
|
||||
let(
|
||||
facepts = select(pts, faces[i]),
|
||||
center = mean(facepts),
|
||||
rotatedface = rot(from=facenormals[i], to=[0,0,1], p=move(-center, p=facepts)),
|
||||
clockwise = sortidx([for(pt=rotatedface) -atan2(pt.y,pt.x)])
|
||||
)
|
||||
select(faces[i],clockwise)
|
||||
]
|
||||
) [ordered_faces, facenormals];
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
Loading…
Reference in a new issue