mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-28 15:59:45 +00:00
Added lerpn(). Removed modrange(). any(), all(), and count_true() can now be given function literals.
This commit is contained in:
parent
a05af703f9
commit
b424bad5c2
1 changed files with 98 additions and 70 deletions
168
math.scad
168
math.scad
|
@ -174,6 +174,31 @@ function lerp(a,b,u) =
|
|||
[for (v = u) (1-v)*a + v*b ];
|
||||
|
||||
|
||||
// Function: lerpn()
|
||||
// Usage:
|
||||
// x = lerpn(a, b, n);
|
||||
// x = lerpn(a, b, n, <endpoint>);
|
||||
// Description:
|
||||
// Returns exactly `n` values, linearly interpolated between `a` and `b`.
|
||||
// If `endpoint` is true, then the last value will exactly equal `b`.
|
||||
// If `endpoint` is false, then the last value will about `a+(b-a)*(1-1/n)`.
|
||||
// Arguments:
|
||||
// a = First value or vector.
|
||||
// b = Second value or vector.
|
||||
// n = The number of values to return.
|
||||
// endpoint = If true, the last value will be exactly `b`. If false, the last value will be one step less.
|
||||
// Examples:
|
||||
// l = lerpn(-4,4,9); // Returns: [-4,-3,-2,-1,0,1,2,3,4]
|
||||
// l = lerpn(-4,4,8,false); // Returns: [-4,-3,-2,-1,0,1,2,3]
|
||||
// l = lerpn(0,1,6); // Returns: [0, 0.2, 0.4, 0.6, 0.8, 1]
|
||||
// l = lerpn(0,1,5,false); // Returns: [0, 0.2, 0.4, 0.6, 0.8]
|
||||
function lerpn(a,b,n,endpoint=true) =
|
||||
assert(same_shape(a,b), "Bad or inconsistent inputs to lerp")
|
||||
assert(is_int(n))
|
||||
assert(is_bool(endpoint))
|
||||
let( d = n - (endpoint? 1 : 0) )
|
||||
[for (i=[0:1:n-1]) let(u=i/d) (1-u)*a + u*b];
|
||||
|
||||
|
||||
// Section: Undef Safe Math
|
||||
|
||||
|
@ -434,32 +459,6 @@ function modang(x) =
|
|||
let(xx = posmod(x,360)) xx<180? xx : xx-360;
|
||||
|
||||
|
||||
// Function: modrange()
|
||||
// Usage:
|
||||
// modrange(x, y, m, <step>)
|
||||
// Description:
|
||||
// Returns a normalized list of numbers from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`.
|
||||
// Arguments:
|
||||
// x = The start value to constrain.
|
||||
// y = The end value to constrain.
|
||||
// m = Modulo value.
|
||||
// step = Step by this amount.
|
||||
// Examples:
|
||||
// modrange(90,270,360, step=45); // Returns: [90,135,180,225,270]
|
||||
// modrange(270,90,360, step=45); // Returns: [270,315,0,45,90]
|
||||
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
|
||||
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
|
||||
function modrange(x, y, m, step=1) =
|
||||
assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers and the module value cannot be zero." )
|
||||
let(
|
||||
a = posmod(x, m),
|
||||
b = posmod(y, m),
|
||||
c = step>0? (a>b? b+m : b)
|
||||
: (a<b? b-m : b)
|
||||
) [for (i=[a:step:c]) (i%m+m)%m ];
|
||||
|
||||
|
||||
|
||||
// Section: Random Number Generation
|
||||
|
||||
// Function: rand_int()
|
||||
|
@ -1216,72 +1215,85 @@ function compare_vals(a, b) =
|
|||
// a = First list to compare.
|
||||
// b = Second list to compare.
|
||||
function compare_lists(a, b) =
|
||||
a==b? 0
|
||||
: let(
|
||||
cmps = [ for(i=[0:1:min(len(a),len(b))-1])
|
||||
let( cmp = compare_vals(a[i],b[i]) )
|
||||
if(cmp!=0) cmp
|
||||
]
|
||||
)
|
||||
cmps==[]? (len(a)-len(b)) : cmps[0];
|
||||
a==b? 0 :
|
||||
let(
|
||||
cmps = [
|
||||
for (i = [0:1:min(len(a),len(b))-1])
|
||||
let( cmp = compare_vals(a[i],b[i]) )
|
||||
if (cmp!=0) cmp
|
||||
]
|
||||
)
|
||||
cmps==[]? (len(a)-len(b)) : cmps[0];
|
||||
|
||||
|
||||
// Function: any()
|
||||
// Usage:
|
||||
// b = any(l);
|
||||
// b = any(l,func);
|
||||
// Description:
|
||||
// Returns true if any item in list `l` evaluates as true.
|
||||
// If `l` is a lists of lists, `any()` is applied recursively to each sublist.
|
||||
// Arguments:
|
||||
// l = The list to test for true items.
|
||||
// func = An optional function literal of signature (x), returning bool, to test each list item with.
|
||||
// Example:
|
||||
// any([0,false,undef]); // Returns false.
|
||||
// any([1,false,undef]); // Returns true.
|
||||
// any([1,5,true]); // Returns true.
|
||||
// any([[0,0], [0,0]]); // Returns false.
|
||||
// any([[0,0], [0,0]]); // Returns true.
|
||||
// any([[0,0], [1,0]]); // Returns true.
|
||||
function any(l) =
|
||||
function any(l, func) =
|
||||
assert(is_list(l), "The input is not a list." )
|
||||
_any(l);
|
||||
assert(func==undef || is_func(func))
|
||||
is_func(func)
|
||||
? _any_func(l, func)
|
||||
: _any_bool(l);
|
||||
|
||||
function _any(l, i=0, succ=false) =
|
||||
(i>=len(l) || succ)? succ :
|
||||
_any(
|
||||
l, i+1,
|
||||
succ = is_list(l[i]) ? _any(l[i]) : !(!l[i])
|
||||
);
|
||||
function _any_func(l, func, i=0, out=false) =
|
||||
i >= len(l) || out? out :
|
||||
_any_func(l, func, i=i+1, out=out || func(l[i]));
|
||||
|
||||
function _any_bool(l, i=0, out=false) =
|
||||
i >= len(l) || out? out :
|
||||
_any_bool(l, i=i+1, out=out || l[i]);
|
||||
|
||||
|
||||
// Function: all()
|
||||
// Usage:
|
||||
// b = all(l);
|
||||
// b = all(l,func);
|
||||
// Description:
|
||||
// Returns true if all items in list `l` evaluate as true.
|
||||
// If `l` is a lists of lists, `all()` is applied recursively to each sublist.
|
||||
// Returns true if all items in list `l` evaluate as true. If `func` is given a function liteal
|
||||
// of signature (x), returning bool, then that function literal is evaluated for each list item.
|
||||
// Arguments:
|
||||
// l = The list to test for true items.
|
||||
// func = An optional function literal of signature (x), returning bool, to test each list item with.
|
||||
// Example:
|
||||
// all([0,false,undef]); // Returns false.
|
||||
// all([1,false,undef]); // Returns false.
|
||||
// all([1,5,true]); // Returns true.
|
||||
// all([[0,0], [0,0]]); // Returns false.
|
||||
// all([[0,0], [1,0]]); // Returns false.
|
||||
// all([[0,0], [0,0]]); // Returns true.
|
||||
// all([[0,0], [1,0]]); // Returns true.
|
||||
// all([[1,1], [1,1]]); // Returns true.
|
||||
function all(l) =
|
||||
assert( is_list(l), "The input is not a list." )
|
||||
_all(l);
|
||||
function all(l, func) =
|
||||
assert(is_list(l), "The input is not a list.")
|
||||
assert(func==undef || is_func(func))
|
||||
is_func(func)
|
||||
? _all_func(l, func)
|
||||
: _all_bool(l);
|
||||
|
||||
function _all(l, i=0, fail=false) =
|
||||
(i>=len(l) || fail)? !fail :
|
||||
_all(
|
||||
l, i+1,
|
||||
fail = is_list(l[i]) ? !_all(l[i]) : !l[i]
|
||||
) ;
|
||||
function _all_func(l, func, i=0, out=true) =
|
||||
i >= len(l) || !out? out :
|
||||
_all_func(l, func, i=i+1, out=out && func(l[i]));
|
||||
|
||||
function _all_bool(l, i=0, out=true) =
|
||||
i >= len(l) || !out? out :
|
||||
_all_bool(l, i=i+1, out=out && l[i]);
|
||||
|
||||
|
||||
// Function: count_true()
|
||||
// Usage:
|
||||
// n = count_true(l)
|
||||
// n = count_true(l,<nmax=>)
|
||||
// n = count_true(l,func,<nmax=>)
|
||||
// Description:
|
||||
// Returns the number of items in `l` that evaluate as true.
|
||||
// If `l` is a lists of lists, this is applied recursively to each
|
||||
|
@ -1289,24 +1301,38 @@ function _all(l, i=0, fail=false) =
|
|||
// in all recursive sublists.
|
||||
// Arguments:
|
||||
// l = The list to test for true items.
|
||||
// nmax = If given, stop counting if `nmax` items evaluate as true.
|
||||
// func = An optional function literal of signature (x), returning bool, to test each list item with.
|
||||
// ---
|
||||
// nmax = Max number of true items to count. Default: `undef` (no limit)
|
||||
// Example:
|
||||
// count_true([0,false,undef]); // Returns 0.
|
||||
// count_true([1,false,undef]); // Returns 1.
|
||||
// count_true([1,5,false]); // Returns 2.
|
||||
// count_true([1,5,true]); // Returns 3.
|
||||
// count_true([[0,0], [0,0]]); // Returns 0.
|
||||
// count_true([[0,0], [1,0]]); // Returns 1.
|
||||
// count_true([[1,1], [1,1]]); // Returns 4.
|
||||
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
|
||||
function _count_true_rec(l, nmax, _cnt=0, _i=0) =
|
||||
_i>=len(l) || (is_num(nmax) && _cnt>=nmax)? _cnt :
|
||||
_count_true_rec(l, nmax, _cnt=_cnt+(l[_i]?1:0), _i=_i+1);
|
||||
// count_true([[0,0], [0,0]]); // Returns 2.
|
||||
// count_true([[0,0], [1,0]]); // Returns 2.
|
||||
// count_true([[1,1], [1,1]]); // Returns 2.
|
||||
// count_true([[1,1], [1,1]], nmax=1); // Returns 1.
|
||||
function count_true(l, func, nmax) =
|
||||
assert(is_list(l))
|
||||
assert(func==undef || is_func(func))
|
||||
is_func(func)
|
||||
? _count_true_func(l, func, nmax)
|
||||
: _count_true_bool(l, nmax);
|
||||
|
||||
function count_true(l, nmax) =
|
||||
is_undef(nmax)? len([for (x=l) if(x) 1]) :
|
||||
!is_list(l) ? ( l? 1: 0) :
|
||||
_count_true_rec(l, nmax);
|
||||
function _count_true_func(l, func, nmax, i=0, out=0) =
|
||||
i >= len(l) || (nmax!=undef && out>=nmax) ? out :
|
||||
_count_true_func(
|
||||
l, func, nmax, i = i + 1,
|
||||
out = out + (func(l[i])? 1:0)
|
||||
);
|
||||
|
||||
function _count_true_bool(l, nmax, i=0, out=0) =
|
||||
i >= len(l) || (nmax!=undef && out>=nmax) ? out :
|
||||
_count_true_bool(
|
||||
l, nmax, i = i + 1,
|
||||
out = out + (l[i]? 1:0)
|
||||
);
|
||||
|
||||
|
||||
|
||||
|
@ -1573,6 +1599,7 @@ function c_ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?[1,0]:[0,
|
|||
function c_norm(z) = norm_fro(z);
|
||||
|
||||
|
||||
|
||||
// Section: Polynomials
|
||||
|
||||
// Function: quadratic_roots()
|
||||
|
@ -1624,6 +1651,7 @@ function polynomial(p,z,k,total) =
|
|||
: k==len(p) ? total
|
||||
: polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : c_mul(total,z)+[p[k],0]);
|
||||
|
||||
|
||||
// Function: poly_mult()
|
||||
// Usage:
|
||||
// x = polymult(p,q)
|
||||
|
|
Loading…
Reference in a new issue