Added lerpn(). Removed modrange(). any(), all(), and count_true() can now be given function literals.

This commit is contained in:
Garth Minette 2021-04-06 16:59:56 -07:00
parent a05af703f9
commit b424bad5c2

156
math.scad
View file

@ -174,6 +174,31 @@ function lerp(a,b,u) =
[for (v = u) (1-v)*a + v*b ]; [for (v = u) (1-v)*a + v*b ];
// Function: lerpn()
// Usage:
// x = lerpn(a, b, n);
// x = lerpn(a, b, n, <endpoint>);
// Description:
// Returns exactly `n` values, linearly interpolated between `a` and `b`.
// If `endpoint` is true, then the last value will exactly equal `b`.
// If `endpoint` is false, then the last value will about `a+(b-a)*(1-1/n)`.
// Arguments:
// a = First value or vector.
// b = Second value or vector.
// n = The number of values to return.
// endpoint = If true, the last value will be exactly `b`. If false, the last value will be one step less.
// Examples:
// l = lerpn(-4,4,9); // Returns: [-4,-3,-2,-1,0,1,2,3,4]
// l = lerpn(-4,4,8,false); // Returns: [-4,-3,-2,-1,0,1,2,3]
// l = lerpn(0,1,6); // Returns: [0, 0.2, 0.4, 0.6, 0.8, 1]
// l = lerpn(0,1,5,false); // Returns: [0, 0.2, 0.4, 0.6, 0.8]
function lerpn(a,b,n,endpoint=true) =
assert(same_shape(a,b), "Bad or inconsistent inputs to lerp")
assert(is_int(n))
assert(is_bool(endpoint))
let( d = n - (endpoint? 1 : 0) )
[for (i=[0:1:n-1]) let(u=i/d) (1-u)*a + u*b];
// Section: Undef Safe Math // Section: Undef Safe Math
@ -434,32 +459,6 @@ function modang(x) =
let(xx = posmod(x,360)) xx<180? xx : xx-360; let(xx = posmod(x,360)) xx<180? xx : xx-360;
// Function: modrange()
// Usage:
// modrange(x, y, m, <step>)
// Description:
// Returns a normalized list of numbers from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`.
// Arguments:
// x = The start value to constrain.
// y = The end value to constrain.
// m = Modulo value.
// step = Step by this amount.
// Examples:
// modrange(90,270,360, step=45); // Returns: [90,135,180,225,270]
// modrange(270,90,360, step=45); // Returns: [270,315,0,45,90]
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
function modrange(x, y, m, step=1) =
assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers and the module value cannot be zero." )
let(
a = posmod(x, m),
b = posmod(y, m),
c = step>0? (a>b? b+m : b)
: (a<b? b-m : b)
) [for (i=[a:step:c]) (i%m+m)%m ];
// Section: Random Number Generation // Section: Random Number Generation
// Function: rand_int() // Function: rand_int()
@ -1216,9 +1215,10 @@ function compare_vals(a, b) =
// a = First list to compare. // a = First list to compare.
// b = Second list to compare. // b = Second list to compare.
function compare_lists(a, b) = function compare_lists(a, b) =
a==b? 0 a==b? 0 :
: let( let(
cmps = [ for(i=[0:1:min(len(a),len(b))-1]) cmps = [
for (i = [0:1:min(len(a),len(b))-1])
let( cmp = compare_vals(a[i],b[i]) ) let( cmp = compare_vals(a[i],b[i]) )
if (cmp!=0) cmp if (cmp!=0) cmp
] ]
@ -1229,59 +1229,71 @@ function compare_lists(a, b) =
// Function: any() // Function: any()
// Usage: // Usage:
// b = any(l); // b = any(l);
// b = any(l,func);
// Description: // Description:
// Returns true if any item in list `l` evaluates as true. // Returns true if any item in list `l` evaluates as true.
// If `l` is a lists of lists, `any()` is applied recursively to each sublist.
// Arguments: // Arguments:
// l = The list to test for true items. // l = The list to test for true items.
// func = An optional function literal of signature (x), returning bool, to test each list item with.
// Example: // Example:
// any([0,false,undef]); // Returns false. // any([0,false,undef]); // Returns false.
// any([1,false,undef]); // Returns true. // any([1,false,undef]); // Returns true.
// any([1,5,true]); // Returns true. // any([1,5,true]); // Returns true.
// any([[0,0], [0,0]]); // Returns false. // any([[0,0], [0,0]]); // Returns true.
// any([[0,0], [1,0]]); // Returns true. // any([[0,0], [1,0]]); // Returns true.
function any(l) = function any(l, func) =
assert(is_list(l), "The input is not a list." ) assert(is_list(l), "The input is not a list." )
_any(l); assert(func==undef || is_func(func))
is_func(func)
? _any_func(l, func)
: _any_bool(l);
function _any(l, i=0, succ=false) = function _any_func(l, func, i=0, out=false) =
(i>=len(l) || succ)? succ : i >= len(l) || out? out :
_any( _any_func(l, func, i=i+1, out=out || func(l[i]));
l, i+1,
succ = is_list(l[i]) ? _any(l[i]) : !(!l[i]) function _any_bool(l, i=0, out=false) =
); i >= len(l) || out? out :
_any_bool(l, i=i+1, out=out || l[i]);
// Function: all() // Function: all()
// Usage: // Usage:
// b = all(l); // b = all(l);
// b = all(l,func);
// Description: // Description:
// Returns true if all items in list `l` evaluate as true. // Returns true if all items in list `l` evaluate as true. If `func` is given a function liteal
// If `l` is a lists of lists, `all()` is applied recursively to each sublist. // of signature (x), returning bool, then that function literal is evaluated for each list item.
// Arguments: // Arguments:
// l = The list to test for true items. // l = The list to test for true items.
// func = An optional function literal of signature (x), returning bool, to test each list item with.
// Example: // Example:
// all([0,false,undef]); // Returns false. // all([0,false,undef]); // Returns false.
// all([1,false,undef]); // Returns false. // all([1,false,undef]); // Returns false.
// all([1,5,true]); // Returns true. // all([1,5,true]); // Returns true.
// all([[0,0], [0,0]]); // Returns false. // all([[0,0], [0,0]]); // Returns true.
// all([[0,0], [1,0]]); // Returns false. // all([[0,0], [1,0]]); // Returns true.
// all([[1,1], [1,1]]); // Returns true. // all([[1,1], [1,1]]); // Returns true.
function all(l) = function all(l, func) =
assert(is_list(l), "The input is not a list.") assert(is_list(l), "The input is not a list.")
_all(l); assert(func==undef || is_func(func))
is_func(func)
? _all_func(l, func)
: _all_bool(l);
function _all(l, i=0, fail=false) = function _all_func(l, func, i=0, out=true) =
(i>=len(l) || fail)? !fail : i >= len(l) || !out? out :
_all( _all_func(l, func, i=i+1, out=out && func(l[i]));
l, i+1,
fail = is_list(l[i]) ? !_all(l[i]) : !l[i] function _all_bool(l, i=0, out=true) =
) ; i >= len(l) || !out? out :
_all_bool(l, i=i+1, out=out && l[i]);
// Function: count_true() // Function: count_true()
// Usage: // Usage:
// n = count_true(l) // n = count_true(l,<nmax=>)
// n = count_true(l,func,<nmax=>)
// Description: // Description:
// Returns the number of items in `l` that evaluate as true. // Returns the number of items in `l` that evaluate as true.
// If `l` is a lists of lists, this is applied recursively to each // If `l` is a lists of lists, this is applied recursively to each
@ -1289,24 +1301,38 @@ function _all(l, i=0, fail=false) =
// in all recursive sublists. // in all recursive sublists.
// Arguments: // Arguments:
// l = The list to test for true items. // l = The list to test for true items.
// nmax = If given, stop counting if `nmax` items evaluate as true. // func = An optional function literal of signature (x), returning bool, to test each list item with.
// ---
// nmax = Max number of true items to count. Default: `undef` (no limit)
// Example: // Example:
// count_true([0,false,undef]); // Returns 0. // count_true([0,false,undef]); // Returns 0.
// count_true([1,false,undef]); // Returns 1. // count_true([1,false,undef]); // Returns 1.
// count_true([1,5,false]); // Returns 2. // count_true([1,5,false]); // Returns 2.
// count_true([1,5,true]); // Returns 3. // count_true([1,5,true]); // Returns 3.
// count_true([[0,0], [0,0]]); // Returns 0. // count_true([[0,0], [0,0]]); // Returns 2.
// count_true([[0,0], [1,0]]); // Returns 1. // count_true([[0,0], [1,0]]); // Returns 2.
// count_true([[1,1], [1,1]]); // Returns 4. // count_true([[1,1], [1,1]]); // Returns 2.
// count_true([[1,1], [1,1]], nmax=3); // Returns 3. // count_true([[1,1], [1,1]], nmax=1); // Returns 1.
function _count_true_rec(l, nmax, _cnt=0, _i=0) = function count_true(l, func, nmax) =
_i>=len(l) || (is_num(nmax) && _cnt>=nmax)? _cnt : assert(is_list(l))
_count_true_rec(l, nmax, _cnt=_cnt+(l[_i]?1:0), _i=_i+1); assert(func==undef || is_func(func))
is_func(func)
? _count_true_func(l, func, nmax)
: _count_true_bool(l, nmax);
function count_true(l, nmax) = function _count_true_func(l, func, nmax, i=0, out=0) =
is_undef(nmax)? len([for (x=l) if(x) 1]) : i >= len(l) || (nmax!=undef && out>=nmax) ? out :
!is_list(l) ? ( l? 1: 0) : _count_true_func(
_count_true_rec(l, nmax); l, func, nmax, i = i + 1,
out = out + (func(l[i])? 1:0)
);
function _count_true_bool(l, nmax, i=0, out=0) =
i >= len(l) || (nmax!=undef && out>=nmax) ? out :
_count_true_bool(
l, nmax, i = i + 1,
out = out + (l[i]? 1:0)
);
@ -1573,6 +1599,7 @@ function c_ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?[1,0]:[0,
function c_norm(z) = norm_fro(z); function c_norm(z) = norm_fro(z);
// Section: Polynomials // Section: Polynomials
// Function: quadratic_roots() // Function: quadratic_roots()
@ -1624,6 +1651,7 @@ function polynomial(p,z,k,total) =
: k==len(p) ? total : k==len(p) ? total
: polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : c_mul(total,z)+[p[k],0]); : polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : c_mul(total,z)+[p[k],0]);
// Function: poly_mult() // Function: poly_mult()
// Usage: // Usage:
// x = polymult(p,q) // x = polymult(p,q)