Merge pull request #225 from RonaldoCMP/master

Minor changes in is_matrix, in_list, removal of duplicate definitions and format
This commit is contained in:
Revar Desmera 2020-08-04 00:34:30 -07:00 committed by GitHub
commit ba6d59a615
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 99 additions and 167 deletions

View file

@ -18,20 +18,6 @@
// Section: List Query Operations
// Function: is_simple_list()
// Description:
// Returns true just when all elements of `list` are simple values.
// Usage:
// is_simple_list(list)
// Arguments:
// list = The list to check.
// Example:
// a = is_simple_list([3,4,5,6,7,8,9]); Returns: true
// b = is_simple_list([3,4,5,[6],7,8]); Returns: false
function is_simple_list(list) =
is_list(list)
&& []==[for(e=list) if(is_list(e)) 0];
// Function: select()
// Description:
@ -73,9 +59,6 @@ function select(list, start, end=undef) =
: concat([for (i = [s:1:l-1]) list[i]], [for (i = [0:1:e]) list[i]]) ;
// Function: slice()
// Description:
// Returns a slice of a list. The first item is index 0.
@ -101,26 +84,25 @@ function slice(list,start,end) =
) [for (i=[s:1:e-1]) if (e>s) list[i]];
// Function: in_list()
// Description: Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list.
// Arguments:
// val = The simple value to search for.
// list = The list to search.
// idx = If given, searches the given subindexes for matches for `val`.
// idx = If given, searches the given subindex for matches for `val`.
// Example:
// in_list("bar", ["foo", "bar", "baz"]); // Returns true.
// in_list("bee", ["foo", "bar", "baz"]); // Returns false.
// in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true.
function in_list(val,list,idx=undef) =
assert( is_list(list) && (is_undef(idx) || is_finite(idx)),
"Invalid input." )
let( s = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] )
s==[] || s[0]==[] ? false
s==[] || s==[[]] ? false
: is_undef(idx) ? val==list[s]
: val==list[s][idx];
// Function: min_index()
// Usage:
// min_index(vals,[all]);
@ -209,7 +191,6 @@ function repeat(val, n, i=0) =
[for (j=[1:1:n[i]]) repeat(val, n, i+1)];
// Function: list_range()
// Usage:
// list_range(n, [s], [e])
@ -249,7 +230,6 @@ function list_range(n=undef, s=0, e=undef, step=undef) =
// Section: List Manipulation
// Function: reverse()
@ -315,8 +295,6 @@ function deduplicate(list, closed=false, eps=EPSILON) =
: [for (i=[0:1:l-1]) if (i==end || !approx(list[i], list[(i+1)%l], eps)) list[i]];
// Function: deduplicate_indexed()
// Usage:
// new_idxs = deduplicate_indexed(list, indices, [closed], [eps]);
@ -351,8 +329,6 @@ function deduplicate_indexed(list, indices, closed=false, eps=EPSILON) =
];
// Function: repeat_entries()
// Usage:
// newlist = repeat_entries(list, N)
@ -392,8 +368,6 @@ function repeat_entries(list, N, exact = true) =
[for(i=[0:length-1]) each repeat(list[i],reps[i])];
// Function: list_set()
// Usage:
// list_set(list, indices, values, [dflt], [minlen])
@ -433,7 +407,6 @@ function list_set(list=[],indices,values,dflt=0,minlen=0) =
];
// Function: list_insert()
// Usage:
// list_insert(list, indices, values);
@ -465,8 +438,6 @@ function list_insert(list, indices, values, _i=0) =
];
// Function: list_remove()
// Usage:
// list_remove(list, indices)
@ -494,8 +465,6 @@ function list_remove(list, indices) =
];
// Function: list_remove_values()
// Usage:
// list_remove_values(list,values,all=false) =
@ -565,8 +534,6 @@ function list_bset(indexset, valuelist, dflt=0) =
);
// Section: List Length Manipulation
// Function: list_shortest()
@ -579,7 +546,6 @@ function list_shortest(array) =
min([for (v = array) len(v)]);
// Function: list_longest()
// Description:
// Returns the length of the longest sublist in a list of lists.
@ -629,7 +595,6 @@ function list_fit(array, length, fill) =
: list_pad(array,length,fill);
// Section: List Shuffling and Sorting
// Function: shuffle()
@ -684,6 +649,7 @@ function _sort_vectors2(arr) =
)
concat( _sort_vectors2(lesser), equal, _sort_vectors2(greater) );
// Sort a vector of vectors based on the first three entries of each vector
// Lexicographic order, remaining entries of vector ignored
function _sort_vectors3(arr) =
@ -711,7 +677,6 @@ function _sort_vectors3(arr) =
) concat( _sort_vectors3(lesser), equal, _sort_vectors3(greater) );
// Sort a vector of vectors based on the first four entries of each vector
// Lexicographic order, remaining entries of vector ignored
function _sort_vectors4(arr) =
@ -744,7 +709,6 @@ function _sort_vectors4(arr) =
) concat( _sort_vectors4(lesser), equal, _sort_vectors4(greater) );
function _sort_general(arr, idx=undef) =
(len(arr)<=1) ? arr :
let(
@ -761,6 +725,7 @@ function _sort_general(arr, idx=undef) =
)
concat(_sort_general(lesser,idx), equal, _sort_general(greater,idx));
function _sort_general(arr, idx=undef) =
(len(arr)<=1) ? arr :
let(
@ -779,9 +744,6 @@ function _sort_general(arr, idx=undef) =
concat(_sort_general(lesser,idx), equal, _sort_general(greater,idx));
// Function: sort()
// Usage:
// sort(list, [idx])
@ -814,7 +776,6 @@ function sort(list, idx=undef) =
: _sort_general(list);
// Function: sortidx()
// Description:
// Given a list, calculates the sort order of the list, and returns
@ -858,6 +819,7 @@ function sortidx(list, idx=undef) =
: // general case
subindex(_sort_general(aug, idx=list_range(s=1,n=len(aug)-1)), 0);
function sortidx(list, idx=undef) =
list==[] ? [] : let(
size = array_dim(list),
@ -896,7 +858,6 @@ function unique(arr) =
];
// Function: unique_count()
// Usage:
// unique_count(arr);
@ -913,8 +874,6 @@ function unique_count(arr) =
[ select(arr,ind), deltas( concat(ind,[len(arr)]) ) ];
// Section: List Iteration Helpers
// Function: idx()
@ -1109,8 +1068,6 @@ function set_union(a, b, get_indices=false) =
) [idxs, nset];
// Function: set_difference()
// Usage:
// s = set_difference(a, b);
@ -1130,7 +1087,6 @@ function set_difference(a, b) =
[ for (i=idx(a)) if(found[i]==[]) a[i] ];
// Function: set_intersection()
// Usage:
// s = set_intersection(a, b);
@ -1151,7 +1107,6 @@ function set_intersection(a, b) =
// Section: Array Manipulation
// Function: add_scalar()
@ -1170,7 +1125,6 @@ function add_scalar(v,s) =
is_finite(s) ? [for (x=v) is_list(x)? add_scalar(x,s) : is_finite(x) ? x+s: x] : v;
// Function: subindex()
// Usage:
// subindex(M, idx)
@ -1346,14 +1300,14 @@ function array_dim(v, depth=undef) =
// Example:
// transpose([3,4,5]); // Returns: [3,4,5]
function transpose(arr) =
let( a0 = arr[0] )
is_list(a0)
? assert([for(a=arr) if(len(a)!=len(a0)) 1]==[], "The array is not a matrix." )
[for (i=[0:1:len(a0)-1])
assert( is_list(arr) && len(arr)>0, "The array is not a vector neither a matrix." )
is_list(arr[0])
? let( l0 = len(arr[0]) )
assert([for(a=arr) if(!is_list(a) || len(a)!=l0) 1 ]==[], "The array is not a vector neither a matrix." )
[for (i=[0:1:l0-1])
[ for (j=[0:1:len(arr)-1]) arr[j][i] ] ]
: arr;
: assert( is_vector(arr), "The array is not a vector neither a matrix." )
arr;
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -140,7 +140,7 @@ function _list_pattern(list) =
// is_consistent(list)
// Description:
// Tests whether input is a list of entries which all have the same list structure
// and are filled with finite numerical data.
// and are filled with finite numerical data. It returns `true`for the empty list.
// Example:
// is_consistent([3,4,5]); // Returns true
// is_consistent([[3,4],[4,5],[6,7]]); // Returns true

148
math.scad
View file

@ -84,7 +84,7 @@ function hypot(x,y,z=0) =
// y = factorial(6); // Returns: 720
// z = factorial(9); // Returns: 362880
function factorial(n,d=0) =
assert(is_int(n) && is_int(d) && n>=0 && d>=0, "Factorial is not defined for negative numbers")
assert(is_int(n) && is_int(d) && n>=0 && d>=0, "Factorial is defined only for non negative integers")
assert(d<=n, "d cannot be larger than n")
product([1,for (i=[n:-1:d+1]) i]);
@ -164,7 +164,7 @@ function binomial_coefficient(n,k) =
function lerp(a,b,u) =
assert(same_shape(a,b), "Bad or inconsistent inputs to lerp")
is_finite(u)? (1-u)*a + u*b :
assert(is_finite(u) || is_vector(u) || valid_range(u), "Input u to lerp must be a number, vector, or range.")
assert(is_finite(u) || is_vector(u) || valid_range(u), "Input u to lerp must be a number, vector, or valid range.")
[for (v = u) (1-v)*a + v*b ];
@ -387,11 +387,12 @@ function modang(x) =
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
function modrange(x, y, m, step=1) =
assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers. The module value cannot be zero.")
assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers and the module value cannot be zero." )
let(
a = posmod(x, m),
b = posmod(y, m),
c = step>0? (a>b? b+m : b) : (a<b? b-m : b)
c = step>0? (a>b? b+m : b)
: (a<b? b-m : b)
) [for (i=[a:step:c]) (i%m+m)%m ];
@ -536,9 +537,13 @@ function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1);
// cumsum([2,2,2]); // returns [2,4,6]
// cumsum([1,2,3]); // returns [1,3,6]
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
function cumsum(v,_i=0,_acc=[]) =
function cumsum(v) =
assert(is_consistent(v), "The input is not consistent." )
_cumsum(v,_i=0,_acc=[]);
function _cumsum(v,_i=0,_acc=[]) =
_i==len(v) ? _acc :
cumsum(
_cumsum(
v, _i+1,
concat(
_acc,
@ -598,7 +603,7 @@ function deltas(v) =
// Description:
// Returns the product of all entries in the given list.
// If passed a list of vectors of same dimension, returns a vector of products of each part.
// If passed a list of square matrices, returns a the resulting product matrix.
// If passed a list of square matrices, returns the resulting product matrix.
// Arguments:
// v = The list to get the product of.
// Example:
@ -691,9 +696,12 @@ function linear_solve(A,b) =
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
)
zeros != [] ? [] :
m<n ? Q*back_substitute(R,b,transpose=true) :
back_substitute(R, transpose(Q)*b);
m<n
// avoiding input validation in back_substitute
? let( n = len(R),
Rt = [for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]] )
Q*reverse(_back_substitute(Rt,reverse(b)))
: _back_substitute(R, transpose(Q)*b);
// Function: matrix_inverse()
// Usage:
@ -793,7 +801,7 @@ function _back_substitute(R, b, x=[]) =
// M = [ [6,-2], [1,8] ];
// det = det2(M); // Returns: 50
function det2(M) =
assert( is_matrix(M,2,2), "Matrix should be 2x2." )
assert( 0*M==[[0,0],[0,0]], "Matrix should be 2x2." )
M[0][0] * M[1][1] - M[0][1]*M[1][0];
@ -806,7 +814,7 @@ function det2(M) =
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
// det = det3(M); // Returns: -334
function det3(M) =
assert( is_matrix(M,3,3), "Matrix should be 3x3." )
assert( 0*M==[[0,0,0],[0,0,0],[0,0,0]], "Matrix should be 3x3." )
M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) -
M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) +
M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]);
@ -846,7 +854,7 @@ function determinant(M) =
// Description:
// Returns true if A is a numeric matrix of height m and width n. If m or n
// are omitted or set to undef then true is returned for any positive dimension.
// If `square` is true then the matrix is required to be square. Note if you
// If `square` is true then the matrix is required to be square.
// specify m != n and require a square matrix then the result will always be false.
// Arguments:
// A = matrix to test
@ -855,10 +863,10 @@ function determinant(M) =
// square = set to true to require a square matrix. Default: false
function is_matrix(A,m,n,square=false) =
is_list(A[0])
    && ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers
    && (is_undef(n) || len(A[0])==n )
    && (is_undef(m) || len(A)==m )
    && ( !square || len(A)==len(A[0]));
&& ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers
&& (is_undef(n) || len(A[0])==n )
&& (is_undef(m) || len(A)==m )
&& ( !square || len(A)==len(A[0]));
// Section: Comparisons and Logic
@ -948,13 +956,16 @@ function compare_lists(a, b) =
// any([1,5,true]); // Returns true.
// any([[0,0], [0,0]]); // Returns false.
// any([[0,0], [1,0]]); // Returns true.
function any(l, i=0, succ=false) =
(i>=len(l) || succ)? succ :
any( l,
i+1,
succ = is_list(l[i]) ? any(l[i]) : !(!l[i])
);
function any(l) =
assert(is_list(l), "The input is not a list." )
_any(l, i=0, succ=false);
function _any(l, i=0, succ=false) =
(i>=len(l) || succ)? succ :
_any( l,
i+1,
succ = is_list(l[i]) ? _any(l[i]) : !(!l[i])
);
// Function: all()
@ -971,12 +982,15 @@ function any(l, i=0, succ=false) =
// all([[0,0], [1,0]]); // Returns false.
// all([[1,1], [1,1]]); // Returns true.
function all(l, i=0, fail=false) =
(i>=len(l) || fail)? !fail :
all( l,
i+1,
fail = is_list(l[i]) ? !all(l[i]) : !l[i]
) ;
assert( is_list(l), "The input is not a list." )
_all(l, i=0, fail=false);
function _all(l, i=0, fail=false) =
(i>=len(l) || fail)? !fail :
_all( l,
i+1,
fail = is_list(l[i]) ? !_all(l[i]) : !l[i]
) ;
// Function: count_true()
@ -999,16 +1013,6 @@ function all(l, i=0, fail=false) =
// count_true([[0,0], [1,0]]); // Returns 1.
// count_true([[1,1], [1,1]]); // Returns 4.
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
function count_true(l, nmax=undef, i=0, cnt=0) =
(i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt :
count_true(
l=l, nmax=nmax, i=i+1, cnt=cnt+(
is_list(l[i])? count_true(l[i], nmax=nmax-cnt) :
(l[i]? 1 : 0)
)
);
function count_true(l, nmax) =
!is_list(l) ? !(!l) ? 1: 0 :
let( c = [for( i = 0,
@ -1204,12 +1208,12 @@ function C_div(z1,z2) =
// where a_n is the z^n coefficient. Polynomial coefficients are real.
// The result is a number if `z` is a number and a complex number otherwise.
function polynomial(p,z,k,total) =
is_undef(k)
? assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])
: k==len(p) ? total
: polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]);
    is_undef(k)
    ?   assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
        assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
        polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])
    : k==len(p) ? total
    : polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]);
// Function: poly_mult()
// Usage:
@ -1219,35 +1223,15 @@ function polynomial(p,z,k,total) =
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
// computes the coefficient list of the product polynomial.
function poly_mult(p,q) =
is_undef(q) ?
assert( is_list(p)
&& []==[for(pi=p) if( !is_vector(pi) && pi!=[]) 0],
"Invalid arguments to poly_mult")
len(p)==2 ? poly_mult(p[0],p[1])
: poly_mult(p[0], poly_mult(select(p,1,-1)))
:
_poly_trim(
[
for(n = [len(p)+len(q)-2:-1:0])
sum( [for(i=[0:1:len(p)-1])
let(j = len(p)+len(q)- 2 - n - i)
if (j>=0 && j<len(q)) p[i]*q[j]
])
]);
function poly_mult(p,q) =
is_undef(q) ?
len(p)==2 ? poly_mult(p[0],p[1])
: poly_mult(p[0], poly_mult(select(p,1,-1)))
:
assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
_poly_trim( [
for(n = [len(p)+len(q)-2:-1:0])
sum( [for(i=[0:1:len(p)-1])
let(j = len(p)+len(q)- 2 - n - i)
if (j>=0 && j<len(q)) p[i]*q[j]
])
]);
    is_undef(q) ?
        len(p)==2
? poly_mult(p[0],p[1])
        : poly_mult(p[0], poly_mult(select(p,1,-1)))
    :
    assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
p*p==0 || q*q==0
? [0]
: _poly_trim(convolve(p,q));
// Function: poly_div()
@ -1258,19 +1242,23 @@ function poly_mult(p,q) =
// a list of two polynomials, [quotient, remainder]. If the division has no remainder then
// the zero polynomial [] is returned for the remainder. Similarly if the quotient is zero
// the returned quotient will be [].
function poly_div(n,d,q) =
is_undef(q)
? assert( is_vector(n) && is_vector(d) , "Invalid polynomials." )
let( d = _poly_trim(d) )
function poly_div(n,d) =
assert( is_vector(n) && is_vector(d) , "Invalid polynomials." )
let( d = _poly_trim(d),
n = _poly_trim(n) )
assert( d!=[0] , "Denominator cannot be a zero polynomial." )
poly_div(n,d,q=[])
: len(n)<len(d) ? [q,_poly_trim(n)] :
n==[0]
? [[0],[0]]
: _poly_div(n,d,q=[]);
function _poly_div(n,d,q) =
len(n)<len(d) ? [q,_poly_trim(n)] :
let(
t = n[0] / d[0],
newq = concat(q,[t]),
newn = [for(i=[1:1:len(n)-1]) i<len(d) ? n[i] - t*d[i] : n[i]]
)
poly_div(newn,d,newq);
_poly_div(newn,d,newq);
// Internal Function: _poly_trim()

View file

@ -3,14 +3,6 @@ include <../std.scad>
// Section: List Query Operations
module test_is_simple_list() {
assert(is_simple_list([1,2,3,4]));
assert(is_simple_list([]));
assert(!is_simple_list([1,2,[3,4]]));
}
test_is_simple_list();
module test_select() {
l = [3,4,5,6,7,8,9];
assert(select(l, 5, 6) == [8,9]);

View file

@ -913,23 +913,21 @@ test_qr_factor();
module test_poly_mult(){
assert_equal(poly_mult([3,2,1],[4,5,6,7]),[12,23,32,38,20,7]);
assert_equal(poly_mult([3,2,1],[0]),[0]);
// assert_equal(poly_mult([3,2,1],[]),[]);
assert_equal(poly_mult([[1,2],[3,4],[5,6]]), [15,68,100,48]);
assert_equal(poly_mult([3,2,1],[0]),[0]);
assert_equal(poly_mult([[1,2],[0],[5,6]]), [0]);
// assert_equal(poly_mult([[1,2],[],[5,6]]), []);
assert_equal(poly_mult([[3,4,5],[0,0,0]]), [0]);
// assert_equal(poly_mult([[3,4,5],[0,0,0]]),[]);
assert_equal(poly_mult([[0],[0,0,0]]),[0]);
}
test_poly_mult();
module test_poly_div(){
assert_equal(poly_div(poly_mult([4,3,3,2],[2,1,3]), [2,1,3]),[[4,3,3,2],[0]]);
// assert_equal(poly_div(poly_mult([4,3,3,2],[2,1,3]), [2,1,3]),[[4,3,3,2],[]]);
assert_equal(poly_div([1,2,3,4],[1,2,3,4,5]), [[], [1,2,3,4]]);
assert_equal(poly_div(poly_add(poly_mult([1,2,3,4],[2,0,2]), [1,1,2]), [1,2,3,4]), [[2,0,2],[1,1,2]]);
assert_equal(poly_div([1,2,3,4], [1,-3]), [[1,5,18],[58]]);
assert_equal(poly_div([0], [1,-3]), [[0],[0]]);
}
test_poly_div();