mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
Merge pull request #140 from adrianVmariano/master
Added xymove to turtle.
This commit is contained in:
commit
bdb641fbf5
5 changed files with 88 additions and 46 deletions
14
affine.scad
14
affine.scad
|
@ -245,13 +245,14 @@ function affine3d_rot_from_to(from, to) = let(
|
||||||
// Description:
|
// Description:
|
||||||
// Returns a transformation that maps one coordinate frame to another. You must specify two or three of `x`, `y`, and `z`. The specified
|
// Returns a transformation that maps one coordinate frame to another. You must specify two or three of `x`, `y`, and `z`. The specified
|
||||||
// axes are mapped to the vectors you supplied. If you give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand coordinate system.
|
// axes are mapped to the vectors you supplied. If you give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand coordinate system.
|
||||||
// If the vectors you give are orthogonal the result will be a rotation. The `reverse` parameter will supply the inverse map, which enables you
|
// If the vectors you give are orthogonal the result will be a rotation and the `reverse` parameter will supply the inverse map, which enables you
|
||||||
// to map two arbitrary coordinate systems two each other by using the canonical coordinate system as an intermediary.
|
// to map two arbitrary coordinate systems two each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option
|
||||||
|
// with non-orthogonal inputs.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// x = Destination vector for x axis
|
// x = Destination vector for x axis
|
||||||
// y = Destination vector for y axis
|
// y = Destination vector for y axis
|
||||||
// z = Destination vector for z axis
|
// z = Destination vector for z axis
|
||||||
// reverse = reverse direction of the map. Default: false
|
// reverse = reverse direction of the map for orthogonal inputs. Default: false
|
||||||
// Examples:
|
// Examples:
|
||||||
// T = affine_frame_map(x=[1,1,0], y=[-1,1]); // This map is just a rotation around the z axis
|
// T = affine_frame_map(x=[1,1,0], y=[-1,1]); // This map is just a rotation around the z axis
|
||||||
// T = affine_frame_map(x=[1,0,0], y=[1,1]); // This map is not a rotation because x and y aren't orthogonal
|
// T = affine_frame_map(x=[1,0,0], y=[1,1]); // This map is not a rotation because x and y aren't orthogonal
|
||||||
|
@ -276,7 +277,12 @@ function affine_frame_map(x,y,z, reverse=false) =
|
||||||
is_undef(z) ? [x, y, cross(x,y)] :
|
is_undef(z) ? [x, y, cross(x,y)] :
|
||||||
[x, y, z]
|
[x, y, z]
|
||||||
)
|
)
|
||||||
reverse ? affine2d_to_3d(map) : affine2d_to_3d(transpose(map));
|
reverse ?
|
||||||
|
let( ocheck = approx(map[0]*map[1],0) && approx(map[0]*map[2],0) && approx(map[1]*map[2],0))
|
||||||
|
assert(ocheck, "Inputs must be orthogonal when reverse==true")
|
||||||
|
affine2d_to_3d(map)
|
||||||
|
:
|
||||||
|
affine2d_to_3d(transpose(map));
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
16
arrays.scad
16
arrays.scad
|
@ -797,17 +797,11 @@ function unique(arr) =
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// arr = The list to analyze.
|
// arr = The list to analyze.
|
||||||
function unique_count(arr) =
|
function unique_count(arr) =
|
||||||
assert(is_list(arr)||is_string(list))
|
assert(is_list(arr) || is_string(arr))
|
||||||
len(arr)==0 ? [[],[]] :
|
let( arr=sort(arr) )
|
||||||
len(arr)==1 ? [arr,[1]] :
|
let(ind = [0,for(i=[1:1:len(arr)-1]) if (arr[i]!=arr[i-1]) i])
|
||||||
_unique_count(sort(arr), ulist=[], counts=[], ind=1, curtot=1);
|
[select(arr,ind),
|
||||||
|
deltas(concat(ind,[len(arr)]))];
|
||||||
function _unique_count(arr, ulist, counts, ind, curtot) =
|
|
||||||
ind == len(arr)+1 ? [ulist, counts] :
|
|
||||||
ind==len(arr) || arr[ind] != arr[ind-1] ? _unique_count(arr,concat(ulist,[arr[ind-1]]), concat(counts,[curtot]),ind+1,1) :
|
|
||||||
_unique_count(arr,ulist,counts,ind+1,curtot+1);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Section: List Iteration Helpers
|
// Section: List Iteration Helpers
|
||||||
|
|
||||||
|
|
11
common.scad
11
common.scad
|
@ -116,6 +116,17 @@ function is_consistent(list) =
|
||||||
is_list(list) && is_list_of(list, list[0]);
|
is_list(list) && is_list_of(list, list[0]);
|
||||||
|
|
||||||
|
|
||||||
|
// Function: same_shape()
|
||||||
|
// Usage:
|
||||||
|
// same_shape(a,b)
|
||||||
|
// Description:
|
||||||
|
// Tests whether the inputs `a` and `b` are both numeric and are the same shaped list.
|
||||||
|
// Example:
|
||||||
|
// same_shape([3,[4,5]],[7,[3,4]]); // Returns true
|
||||||
|
// same_shape([3,4,5], [7,[3,4]]); // Returns false
|
||||||
|
function same_shape(a,b) = a*0 == b*0;
|
||||||
|
|
||||||
|
|
||||||
// Section: Handling `undef`s.
|
// Section: Handling `undef`s.
|
||||||
|
|
||||||
|
|
||||||
|
|
53
math.scad
53
math.scad
|
@ -106,7 +106,9 @@ function factorial(n,d=1) = product([for (i=[n:-1:d]) i]);
|
||||||
// // Points colored in ROYGBIV order.
|
// // Points colored in ROYGBIV order.
|
||||||
// rainbow(pts) translate($item) circle(d=3,$fn=8);
|
// rainbow(pts) translate($item) circle(d=3,$fn=8);
|
||||||
function lerp(a,b,u) =
|
function lerp(a,b,u) =
|
||||||
|
assert(same_shape(a,b), "Bad or inconsistent inputs to lerp")
|
||||||
is_num(u)? (1-u)*a + u*b :
|
is_num(u)? (1-u)*a + u*b :
|
||||||
|
assert(!is_undef(u)&&!is_bool(u)&&!is_string(u), "Input u to lerp must be a number, vector, or range.")
|
||||||
[for (v = u) lerp(a,b,v)];
|
[for (v = u) lerp(a,b,v)];
|
||||||
|
|
||||||
|
|
||||||
|
@ -555,15 +557,17 @@ function median(v) =
|
||||||
// Description:
|
// Description:
|
||||||
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
|
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
|
||||||
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
|
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
|
||||||
// If A is rank deficient or singular then linear_solve returns `undef`.
|
// If A is rank deficient or singular then linear_solve returns `undef`. If b is a matrix that is compatible with A
|
||||||
|
// then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you
|
||||||
|
// want to solve Ax=b1 and Ax=b2 that you need to form the matrix transpose([b1,b2]) for the right hand side and then
|
||||||
|
// transpose the returned value.
|
||||||
function linear_solve(A,b) =
|
function linear_solve(A,b) =
|
||||||
assert(is_matrix(A))
|
assert(is_matrix(A))
|
||||||
assert(is_vector(b))
|
|
||||||
let(
|
let(
|
||||||
dim = array_dim(A),
|
m = len(A),
|
||||||
m=dim[0], n=dim[1]
|
n = len(A[0])
|
||||||
)
|
)
|
||||||
assert(len(b)==m,str("Incompatible matrix and vector",dim,len(b)))
|
assert(is_vector(b,m) || is_matrix(b,m),"Incompatible matrix and right hand side")
|
||||||
let (
|
let (
|
||||||
qr = m<n? qr_factor(transpose(A)) : qr_factor(A),
|
qr = m<n? qr_factor(transpose(A)) : qr_factor(A),
|
||||||
maxdim = max(n,m),
|
maxdim = max(n,m),
|
||||||
|
@ -576,6 +580,18 @@ function linear_solve(A,b) =
|
||||||
m<n ? Q*back_substitute(R,b,transpose=true) :
|
m<n ? Q*back_substitute(R,b,transpose=true) :
|
||||||
back_substitute(R, transpose(Q)*b);
|
back_substitute(R, transpose(Q)*b);
|
||||||
|
|
||||||
|
// Function: matrix_inverse()
|
||||||
|
// Usage:
|
||||||
|
// matrix_inverse(A)
|
||||||
|
// Description:
|
||||||
|
// Compute the matrix inverse of the square matrix A. If A is singular, returns undef.
|
||||||
|
// Note that if you just want to solve a linear system of equations you should NOT
|
||||||
|
// use this function. Instead use linear_solve, or use qr_factor. The computation
|
||||||
|
// will be faster and more accurate.
|
||||||
|
function matrix_inverse(A) =
|
||||||
|
assert(is_matrix(A,square=true),"Input to matrix_inverse() must be a square matrix")
|
||||||
|
linear_solve(A,ident(len(A)));
|
||||||
|
|
||||||
|
|
||||||
// Function: submatrix()
|
// Function: submatrix()
|
||||||
// Usage: submatrix(M, ind1, ind2)
|
// Usage: submatrix(M, ind1, ind2)
|
||||||
|
@ -592,11 +608,9 @@ function submatrix(M,ind1,ind2) = [for(i=ind1) [for(j=ind2) M[i][j] ] ];
|
||||||
function qr_factor(A) =
|
function qr_factor(A) =
|
||||||
assert(is_matrix(A))
|
assert(is_matrix(A))
|
||||||
let(
|
let(
|
||||||
dim = array_dim(A),
|
m = len(A),
|
||||||
m = dim[0],
|
n = len(A[0])
|
||||||
n = dim[1]
|
|
||||||
)
|
)
|
||||||
assert(len(dim)==2)
|
|
||||||
let(
|
let(
|
||||||
qr =_qr_factor(A, column=0, m = m, n=n, Q=ident(m)),
|
qr =_qr_factor(A, column=0, m = m, n=n, Q=ident(m)),
|
||||||
Rzero = [
|
Rzero = [
|
||||||
|
@ -620,14 +634,18 @@ function _qr_factor(A,Q, column, m, n) =
|
||||||
_qr_factor(Qf*A, Q*Qf, column+1, m, n);
|
_qr_factor(Qf*A, Q*Qf, column+1, m, n);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: back_substitute()
|
// Function: back_substitute()
|
||||||
// Usage: back_substitute(R, b, [transpose])
|
// Usage: back_substitute(R, b, [transpose])
|
||||||
// Description:
|
// Description:
|
||||||
// Solves the problem Rx=b where R is an upper triangular square matrix. No check is made that the lower triangular entries
|
// Solves the problem Rx=b where R is an upper triangular square matrix. No check is made that the lower triangular entries
|
||||||
// are actually zero. If transpose==true then instead solve transpose(R)*x=b.
|
// are actually zero. If transpose==true then instead solve transpose(R)*x=b.
|
||||||
|
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
|
||||||
|
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result.
|
||||||
function back_substitute(R, b, x=[],transpose = false) =
|
function back_substitute(R, b, x=[],transpose = false) =
|
||||||
let(n=len(b))
|
assert(is_matrix(R, square=true))
|
||||||
|
let(n=len(R))
|
||||||
|
assert(is_vector(b,n) || is_matrix(b,n),"R and b are not compatible in back_substitute")
|
||||||
|
!is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i))]) :
|
||||||
transpose?
|
transpose?
|
||||||
reverse(back_substitute(
|
reverse(back_substitute(
|
||||||
[for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
|
[for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
|
||||||
|
@ -697,18 +715,27 @@ function determinant(M) =
|
||||||
|
|
||||||
// Function: is_matrix()
|
// Function: is_matrix()
|
||||||
// Usage:
|
// Usage:
|
||||||
// is_matrix(A,[m],[n])
|
// is_matrix(A,[m],[n],[square])
|
||||||
// Description:
|
// Description:
|
||||||
// Returns true if A is a numeric matrix of height m and width n. If m or n
|
// Returns true if A is a numeric matrix of height m and width n. If m or n
|
||||||
// are omitted or set to undef then true is returned for any positive dimension.
|
// are omitted or set to undef then true is returned for any positive dimension.
|
||||||
function is_matrix(A,m,n) =
|
// If `square` is true then the matrix is required to be square. Note if you
|
||||||
|
// specify m != n and require a square matrix then the result will always be false.
|
||||||
|
// Arguments:
|
||||||
|
// A = matrix to test
|
||||||
|
// m = optional height of matrix
|
||||||
|
// n = optional width of matrix
|
||||||
|
// square = set to true to require a square matrix. Default: false
|
||||||
|
function is_matrix(A,m,n, square=false) =
|
||||||
is_list(A) && len(A)>0 &&
|
is_list(A) && len(A)>0 &&
|
||||||
(is_undef(m) || len(A)==m) &&
|
(is_undef(m) || len(A)==m) &&
|
||||||
is_vector(A[0]) &&
|
is_vector(A[0]) &&
|
||||||
(is_undef(n) || len(A[0])==n) &&
|
(is_undef(n) || len(A[0])==n) &&
|
||||||
|
(!square || n==m) &&
|
||||||
is_consistent(A);
|
is_consistent(A);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Section: Comparisons and Logic
|
// Section: Comparisons and Logic
|
||||||
|
|
||||||
// Function: approx()
|
// Function: approx()
|
||||||
|
|
|
@ -407,13 +407,16 @@ function _normal_segment(p1,p2) =
|
||||||
// the computed turtle path. If you set `full_state` to true then it instead returns the full turtle state.
|
// the computed turtle path. If you set `full_state` to true then it instead returns the full turtle state.
|
||||||
// You can invoke `turtle` again with this full state to continue the turtle path where you left off.
|
// You can invoke `turtle` again with this full state to continue the turtle path where you left off.
|
||||||
//
|
//
|
||||||
|
// The turtle state is a list with three entries: the path constructed so far, the current step as a 2-vector, and the current default angle.
|
||||||
|
//
|
||||||
// For the list below, `dist` is the current movement distance.
|
// For the list below, `dist` is the current movement distance.
|
||||||
//
|
//
|
||||||
// Commands | Arguments | What it does
|
// Commands | Arguments | What it does
|
||||||
// ------------ | ------------------ | -------------------------------
|
// ------------ | ------------------ | -------------------------------
|
||||||
// "move" | [dist] | Move turtle scale*dist units in the turtle direction. Default dist=1.
|
// "move" | [dist] | Move turtle scale*dist units in the turtle direction. Default dist=1.
|
||||||
// "xmove" | [dist] | Move turtle scale*dist units in the x direction. Default dist=1.
|
// "xmove" | [dist] | Move turtle scale*dist units in the x direction. Default dist=1. Does not change turtle direction.
|
||||||
// "ymove" | [dist] | Move turtle scale*dist units in the y direction. Default dist=1.
|
// "ymove" | [dist] | Move turtle scale*dist units in the y direction. Default dist=1. Does not change turtle direction.
|
||||||
|
// "xymove" | vector | Move turtle by the specified vector. Does not change turtle direction.
|
||||||
// "untilx" | xtarget | Move turtle in turtle direction until x==xtarget. Produces an error if xtarget is not reachable.
|
// "untilx" | xtarget | Move turtle in turtle direction until x==xtarget. Produces an error if xtarget is not reachable.
|
||||||
// "untily" | ytarget | Move turtle in turtle direction until y==ytarget. Produces an error if xtarget is not reachable.
|
// "untily" | ytarget | Move turtle in turtle direction until y==ytarget. Produces an error if xtarget is not reachable.
|
||||||
// "jump" | point | Move the turtle to the specified point
|
// "jump" | point | Move the turtle to the specified point
|
||||||
|
@ -550,12 +553,12 @@ function _turtle_command(command, parm, parm2, state, index) =
|
||||||
arcsteps=3,
|
arcsteps=3,
|
||||||
parm = !is_string(parm) ? parm : undef,
|
parm = !is_string(parm) ? parm : undef,
|
||||||
parm2 = !is_string(parm2) ? parm2 : undef,
|
parm2 = !is_string(parm2) ? parm2 : undef,
|
||||||
needvec = ["jump"],
|
needvec = ["jump", "xymove"],
|
||||||
neednum = ["untilx","untily","xjump","yjump","angle","length","scale","addlength"],
|
neednum = ["untilx","untily","xjump","yjump","angle","length","scale","addlength"],
|
||||||
needeither = ["setdir"],
|
needeither = ["setdir"],
|
||||||
chvec = !in_list(command,needvec) || is_vector(parm),
|
chvec = !in_list(command,needvec) || is_vector(parm,2),
|
||||||
chnum = !in_list(command,neednum) || is_num(parm),
|
chnum = !in_list(command,neednum) || is_num(parm),
|
||||||
vec_or_num = !in_list(command,needeither) || (is_num(parm) || is_vector(parm)),
|
vec_or_num = !in_list(command,needeither) || (is_num(parm) || is_vector(parm,2)),
|
||||||
lastpt = select(state[path],-1)
|
lastpt = select(state[path],-1)
|
||||||
)
|
)
|
||||||
assert(chvec,str("\"",command,"\" requires a vector parameter at index ",index))
|
assert(chvec,str("\"",command,"\" requires a vector parameter at index ",index))
|
||||||
|
@ -581,6 +584,7 @@ function _turtle_command(command, parm, parm2, state, index) =
|
||||||
) :
|
) :
|
||||||
command=="xmove" ? list_set(state, path, concat(state[path],[default(parm,1)*norm(state[step])*[1,0]+lastpt])):
|
command=="xmove" ? list_set(state, path, concat(state[path],[default(parm,1)*norm(state[step])*[1,0]+lastpt])):
|
||||||
command=="ymove" ? list_set(state, path, concat(state[path],[default(parm,1)*norm(state[step])*[0,1]+lastpt])):
|
command=="ymove" ? list_set(state, path, concat(state[path],[default(parm,1)*norm(state[step])*[0,1]+lastpt])):
|
||||||
|
command=="xymove" ? list_set(state, path, concat(state[path], [lastpt+parm])):
|
||||||
command=="jump" ? list_set(state, path, concat(state[path],[parm])):
|
command=="jump" ? list_set(state, path, concat(state[path],[parm])):
|
||||||
command=="xjump" ? list_set(state, path, concat(state[path],[[parm,lastpt.y]])):
|
command=="xjump" ? list_set(state, path, concat(state[path],[[parm,lastpt.y]])):
|
||||||
command=="yjump" ? list_set(state, path, concat(state[path],[[lastpt.x,parm]])):
|
command=="yjump" ? list_set(state, path, concat(state[path],[[lastpt.x,parm]])):
|
||||||
|
|
Loading…
Reference in a new issue