mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
Merge pull request #1081 from revarbat/revarbat_dev
Added Topics and docs cleanups to linalg.scad
This commit is contained in:
commit
bff2fd7a17
1 changed files with 33 additions and 9 deletions
42
linalg.scad
42
linalg.scad
|
@ -33,6 +33,7 @@
|
|||
// Function: is_matrix()
|
||||
// Usage:
|
||||
// test = is_matrix(A, [m], [n], [square])
|
||||
// Topics: Matrices
|
||||
// Description:
|
||||
// Returns true if A is a numeric matrix of height m and width n with finite entries. If m or n
|
||||
// are omitted or set to undef then true is returned for any positive dimension.
|
||||
|
@ -52,6 +53,7 @@ function is_matrix(A,m,n,square=false) =
|
|||
// Function: is_matrix_symmetric()
|
||||
// Usage:
|
||||
// b = is_matrix_symmetric(A, [eps])
|
||||
// Topics: Matrices
|
||||
// Description:
|
||||
// Returns true if the input matrix is symmetric, meaning it approximately equals its transpose.
|
||||
// The matrix can have arbitrary entries.
|
||||
|
@ -65,6 +67,7 @@ function is_matrix_symmetric(A,eps=1e-12) =
|
|||
// Function: is_rotation()
|
||||
// Usage:
|
||||
// b = is_rotation(A, [dim], [centered])
|
||||
// Topics: Affine, Matrices, Transforms
|
||||
// Description:
|
||||
// Returns true if the input matrix is a square affine matrix that is a rotation around any point,
|
||||
// or around the origin if `centered` is true.
|
||||
|
@ -93,6 +96,7 @@ function is_rotation(A,dim,centered=false) =
|
|||
// Usage:
|
||||
// echo_matrix(M, [description], [sig], [sep], [eps]);
|
||||
// dummy = echo_matrix(M, [description], [sig], [sep], [eps]),
|
||||
// Topics: Matrices
|
||||
// Description:
|
||||
// Display a numerical matrix in a readable columnar format with `sig` significant
|
||||
// digits. Values smaller than eps display as zero. If you give a description
|
||||
|
@ -129,7 +133,7 @@ module echo_matrix(M,description,sig=4,sep=1,eps=1e-9)
|
|||
// Function: column()
|
||||
// Usage:
|
||||
// list = column(M, i);
|
||||
// Topics: Matrices, List Handling
|
||||
// Topics: Matrices, List Handling, Arrays
|
||||
// See Also: select(), slice()
|
||||
// Description:
|
||||
// Extracts entry `i` from each list in M, or equivalently column i from the matrix M, and returns it as a vector.
|
||||
|
@ -155,7 +159,7 @@ function column(M, i) =
|
|||
// Function: submatrix()
|
||||
// Usage:
|
||||
// mat = submatrix(M, idx1, idx2);
|
||||
// Topics: Matrices
|
||||
// Topics: Matrices, Arrays
|
||||
// See Also: column(), block_matrix(), submatrix_set()
|
||||
// Description:
|
||||
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2.
|
||||
|
@ -188,7 +192,7 @@ function submatrix(M,idx1,idx2) =
|
|||
// Function: ident()
|
||||
// Usage:
|
||||
// mat = ident(n);
|
||||
// Topics: Affine, Matrices
|
||||
// Topics: Affine, Matrices, Transforms
|
||||
// Description:
|
||||
// Create an `n` by `n` square identity matrix.
|
||||
// Arguments:
|
||||
|
@ -220,7 +224,7 @@ function ident(n) = [
|
|||
// Function: diagonal_matrix()
|
||||
// Usage:
|
||||
// mat = diagonal_matrix(diag, [offdiag]);
|
||||
// Topics: Matrices
|
||||
// Topics: Affine, Matrices
|
||||
// See Also: column(), submatrix()
|
||||
// Description:
|
||||
// Creates a square matrix with the items in the list `diag` on
|
||||
|
@ -237,7 +241,7 @@ function diagonal_matrix(diag, offdiag=0) =
|
|||
// Function: transpose()
|
||||
// Usage:
|
||||
// M = transpose(M, [reverse]);
|
||||
// Topics: Matrices
|
||||
// Topics: Linear Algebra, Matrices
|
||||
// See Also: submatrix(), block_matrix(), hstack(), flatten()
|
||||
// Description:
|
||||
// Returns the transpose of the given input matrix. The input can be a matrix with arbitrary entries or
|
||||
|
@ -315,6 +319,7 @@ function transpose(M, reverse=false) =
|
|||
// Function: outer_product()
|
||||
// Usage:
|
||||
// x = outer_product(u,v);
|
||||
// Topics: Linear Algebra, Matrices
|
||||
// Description:
|
||||
// Compute the outer product of two vectors, a matrix.
|
||||
// Usage:
|
||||
|
@ -326,7 +331,7 @@ function outer_product(u,v) =
|
|||
// Function: submatrix_set()
|
||||
// Usage:
|
||||
// mat = submatrix_set(M, A, [m], [n]);
|
||||
// Topics: Matrices
|
||||
// Topics: Matrices, Arrays
|
||||
// See Also: column(), submatrix()
|
||||
// Description:
|
||||
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
|
||||
|
@ -356,7 +361,7 @@ function submatrix_set(M,A,m=0,n=0) =
|
|||
// A = hstack(M1, M2)
|
||||
// A = hstack(M1, M2, M3)
|
||||
// A = hstack([M1, M2, M3, ...])
|
||||
// Topics: Matrices
|
||||
// Topics: Matrices, Arrays
|
||||
// See Also: column(), submatrix(), block_matrix()
|
||||
// Description:
|
||||
// Constructs a matrix by horizontally "stacking" together compatible matrices or vectors. Vectors are treated as columsn in the stack.
|
||||
|
@ -408,7 +413,7 @@ function hstack(M1, M2, M3) =
|
|||
// Function: block_matrix()
|
||||
// Usage:
|
||||
// bmat = block_matrix([[M11, M12,...],[M21, M22,...], ... ]);
|
||||
// Topics: Matrices
|
||||
// Topics: Matrices, Arrays
|
||||
// See Also: column(), submatrix()
|
||||
// Description:
|
||||
// Create a block matrix by supplying a matrix of matrices, which will
|
||||
|
@ -455,6 +460,7 @@ function block_matrix(M) =
|
|||
// Function: linear_solve()
|
||||
// Usage:
|
||||
// solv = linear_solve(A,b,[pivot])
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Solves the linear system Ax=b. If `A` is square and non-singular the unique solution is returned. If `A` is overdetermined
|
||||
// the least squares solution is returned. If `A` is underdetermined, the minimal norm solution is returned.
|
||||
|
@ -463,7 +469,7 @@ function block_matrix(M) =
|
|||
// want to solve Ax=b1 and Ax=b2 that you need to form the matrix `transpose([b1,b2])` for the right hand side and then
|
||||
// transpose the returned value. The solution is computed using QR factorization. If `pivot` is set to true (the default) then
|
||||
// pivoting is used in the QR factorization, which is slower but expected to be more accurate.
|
||||
// Usage:
|
||||
// Arguments:
|
||||
// A = Matrix describing the linear system, which need not be square
|
||||
// b = right hand side for linear system, which can be a matrix to solve several cases simultaneously. Must be consistent with A.
|
||||
// pivot = if true use pivoting when computing the QR factorization. Default: true
|
||||
|
@ -491,6 +497,7 @@ function linear_solve(A,b,pivot=true) =
|
|||
// Function: linear_solve3()
|
||||
// Usage:
|
||||
// x = linear_solve3(A,b)
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Fast solution to a 3x3 linear system using Cramer's rule (which appears to be the fastest
|
||||
// method in OpenSCAD). The input `A` must be a 3x3 matrix. Returns undef if `A` is singular.
|
||||
|
@ -515,6 +522,7 @@ function linear_solve3(A,b) =
|
|||
// Function: matrix_inverse()
|
||||
// Usage:
|
||||
// mat = matrix_inverse(A)
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Compute the matrix inverse of the square matrix `A`. If `A` is singular, returns `undef`.
|
||||
// Note that if you just want to solve a linear system of equations you should NOT use this function.
|
||||
|
@ -528,6 +536,7 @@ function matrix_inverse(A) =
|
|||
// Function: rot_inverse()
|
||||
// Usage:
|
||||
// B = rot_inverse(A)
|
||||
// Topics: Matrices, Linear Algebra, Affine
|
||||
// Description:
|
||||
// Inverts a 2d (3x3) or 3d (4x4) rotation matrix. The matrix can be a rotation around any center,
|
||||
// so it may include a translation. This is faster and likely to be more accurate than using `matrix_inverse()`.
|
||||
|
@ -548,6 +557,7 @@ function rot_inverse(T) =
|
|||
// Function: null_space()
|
||||
// Usage:
|
||||
// x = null_space(A)
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Returns an orthonormal basis for the null space of `A`, namely the vectors {x} such that Ax=0.
|
||||
// If the null space is just the origin then returns an empty list.
|
||||
|
@ -564,6 +574,7 @@ function null_space(A,eps=1e-12) =
|
|||
// Function: qr_factor()
|
||||
// Usage:
|
||||
// qr = qr_factor(A,[pivot]);
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R,P]. This factorization can be
|
||||
// used to solve linear systems of equations. The factorization is `A = Q*R*transpose(P)`. If pivot is false (the default)
|
||||
|
@ -614,6 +625,7 @@ function _swap_matrix(n,i,j) =
|
|||
// Function: back_substitute()
|
||||
// Usage:
|
||||
// x = back_substitute(R, b, [transpose]);
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are
|
||||
// ignored. If transpose==true then instead solve transpose(R)*x=b.
|
||||
|
@ -645,6 +657,7 @@ function _back_substitute(R, b, x=[]) =
|
|||
// Function: cholesky()
|
||||
// Usage:
|
||||
// L = cholesky(A);
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Compute the cholesky factor, L, of the symmetric positive definite matrix A.
|
||||
// The matrix L is lower triangular and `L * transpose(L) = A`. If the A is
|
||||
|
@ -680,6 +693,7 @@ function _cholesky(A,L,n) =
|
|||
// Function: det2()
|
||||
// Usage:
|
||||
// d = det2(M);
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Rturns the determinant for the given 2x2 matrix.
|
||||
// Arguments:
|
||||
|
@ -695,6 +709,7 @@ function det2(M) =
|
|||
// Function: det3()
|
||||
// Usage:
|
||||
// d = det3(M);
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Returns the determinant for the given 3x3 matrix.
|
||||
// Arguments:
|
||||
|
@ -711,6 +726,7 @@ function det3(M) =
|
|||
// Function: det4()
|
||||
// Usage:
|
||||
// d = det4(M);
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Returns the determinant for the given 4x4 matrix.
|
||||
// Arguments:
|
||||
|
@ -732,6 +748,7 @@ function det4(M) =
|
|||
// Function: determinant()
|
||||
// Usage:
|
||||
// d = determinant(M);
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Returns the determinant for the given square matrix.
|
||||
// Arguments:
|
||||
|
@ -764,6 +781,7 @@ function determinant(M) =
|
|||
// Function: norm_fro()
|
||||
// Usage:
|
||||
// norm_fro(A)
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Computes frobenius norm of input matrix. The frobenius norm is the square root of the sum of the
|
||||
// squares of all of the entries of the matrix. On vectors it is the same as the usual 2-norm.
|
||||
|
@ -776,8 +794,14 @@ function norm_fro(A) =
|
|||
// Function: matrix_trace()
|
||||
// Usage:
|
||||
// matrix_trace(M)
|
||||
// Topics: Matrices, Linear Algebra
|
||||
// Description:
|
||||
// Computes the trace of a square matrix, the sum of the entries on the diagonal.
|
||||
function matrix_trace(M) =
|
||||
assert(is_matrix(M,square=true), "Input to trace must be a square matrix")
|
||||
[for(i=[0:1:len(M)-1])1] * [for(i=[0:1:len(M)-1]) M[i][i]];
|
||||
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
||||
|
|
Loading…
Reference in a new issue