mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
Merge pull request #229 from adrianVmariano/master
move submatrix to arrays and relax input restrictions
This commit is contained in:
commit
c0481f14eb
4 changed files with 53 additions and 29 deletions
33
arrays.scad
33
arrays.scad
|
@ -1131,7 +1131,8 @@ function add_scalar(v,s) =
|
||||||
// Description:
|
// Description:
|
||||||
// Extracts the entries listed in idx from each entry in M. For a matrix this means
|
// Extracts the entries listed in idx from each entry in M. For a matrix this means
|
||||||
// selecting a specified set of columsn. If idx is a number the return is a vector, otherwise
|
// selecting a specified set of columsn. If idx is a number the return is a vector, otherwise
|
||||||
// it is a list of lists (the submatrix).
|
// it is a list of lists (the submatrix). Note that unlike subindex, even if you give a number for
|
||||||
|
// an index the output includes all levels of list nesting.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// M = The given list of lists.
|
// M = The given list of lists.
|
||||||
// idx = The index, list of indices, or range of indices to fetch.
|
// idx = The index, list of indices, or range of indices to fetch.
|
||||||
|
@ -1146,6 +1147,36 @@ function subindex(M, idx) =
|
||||||
? [for(row=M) row[idx]]
|
? [for(row=M) row[idx]]
|
||||||
: [for(row=M) [for(i=idx) row[i]]];
|
: [for(row=M) [for(i=idx) row[i]]];
|
||||||
|
|
||||||
|
|
||||||
|
// Function: submatrix()
|
||||||
|
// Usage: submatrix(M, idx1, idx2)
|
||||||
|
// Description:
|
||||||
|
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columsn listed in idx2.
|
||||||
|
// Arguments:
|
||||||
|
// M = Given list of lists
|
||||||
|
// idx1 = rows index list or range
|
||||||
|
// idx2 = column index list or range
|
||||||
|
// Example:
|
||||||
|
// M = [[ 1, 2, 3, 4, 5],
|
||||||
|
// [ 6, 7, 8, 9,10],
|
||||||
|
// [11,12,13,14,15],
|
||||||
|
// [16,17,18,19,20],
|
||||||
|
// [21,22,23,24,25]];
|
||||||
|
// submatrix(M,[1:2],[3:4]); // Returns [[9, 10], [14, 15]]
|
||||||
|
// submatrix(M,[1], [3,4])); // Returns [[9,10]]
|
||||||
|
// submatrix(M,1, [3,4])); // Returns [[9,10]]
|
||||||
|
// submatrix(M,1,3)); // Returns [[9]]
|
||||||
|
// submatrix(M, [3,4],1); // Returns [[17],[22]]);
|
||||||
|
// submatrix(M, [1,3],[2,4]); // Returns [[8,10],[18,20]]);
|
||||||
|
// A = [[true, 17, "test"],
|
||||||
|
// [[4,2], 91, false],
|
||||||
|
// [6, [3,4], undef]];
|
||||||
|
// submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]]
|
||||||
|
|
||||||
|
function submatrix(M,idx1,idx2) =
|
||||||
|
[for(i=idx1) [for(j=idx2) M[i][j] ] ];
|
||||||
|
|
||||||
|
|
||||||
// Function: zip()
|
// Function: zip()
|
||||||
// Usage:
|
// Usage:
|
||||||
// zip(v1, v2, v3, [fit], [fill]);
|
// zip(v1, v2, v3, [fit], [fill]);
|
||||||
|
|
12
math.scad
12
math.scad
|
@ -716,18 +716,6 @@ function matrix_inverse(A) =
|
||||||
linear_solve(A,ident(len(A)));
|
linear_solve(A,ident(len(A)));
|
||||||
|
|
||||||
|
|
||||||
// Function: submatrix()
|
|
||||||
// Usage: submatrix(M, ind1, ind2)
|
|
||||||
// Description:
|
|
||||||
// Returns a submatrix with the specified index ranges or index sets.
|
|
||||||
function submatrix(M,ind1,ind2) =
|
|
||||||
assert( is_matrix(M), "Input must be a matrix." )
|
|
||||||
[for(i=ind1)
|
|
||||||
[for(j=ind2)
|
|
||||||
assert( ! is_undef(M[i][j]), "Invalid indexing." )
|
|
||||||
M[i][j] ] ];
|
|
||||||
|
|
||||||
|
|
||||||
// Function: qr_factor()
|
// Function: qr_factor()
|
||||||
// Usage: qr = qr_factor(A)
|
// Usage: qr = qr_factor(A)
|
||||||
// Description:
|
// Description:
|
||||||
|
|
|
@ -357,6 +357,27 @@ module test_subindex() {
|
||||||
test_subindex();
|
test_subindex();
|
||||||
|
|
||||||
|
|
||||||
|
// Need decision about behavior for out of bounds ranges, empty ranges
|
||||||
|
module test_submatrix(){
|
||||||
|
M = [[1,2,3,4,5],
|
||||||
|
[6,7,8,9,10],
|
||||||
|
[11,12,13,14,15],
|
||||||
|
[16,17,18,19,20],
|
||||||
|
[21,22,23,24,25]];
|
||||||
|
assert_equal(submatrix(M,[1:2], [3:4]), [[9,10],[14,15]]);
|
||||||
|
assert_equal(submatrix(M,[1], [3,4]), [[9,10]]);
|
||||||
|
assert_equal(submatrix(M,1, [3,4]), [[9,10]]);
|
||||||
|
assert_equal(submatrix(M, [3,4],1), [[17],[22]]);
|
||||||
|
assert_equal(submatrix(M, [1,3],[2,4]), [[8,10],[18,20]]);
|
||||||
|
assert_equal(submatrix(M, 1,3), [[9]]);
|
||||||
|
A = [[true, 17, "test"],
|
||||||
|
[[4,2], 91, false],
|
||||||
|
[6, [3,4], undef]];
|
||||||
|
assert_equal(submatrix(A,[0,2],[1,2]),[[17, "test"], [[3, 4], undef]]);
|
||||||
|
}
|
||||||
|
test_submatrix();
|
||||||
|
|
||||||
|
|
||||||
module test_force_list() {
|
module test_force_list() {
|
||||||
assert_equal(force_list([3,4,5]), [3,4,5]);
|
assert_equal(force_list([3,4,5]), [3,4,5]);
|
||||||
assert_equal(force_list(5), [5]);
|
assert_equal(force_list(5), [5]);
|
||||||
|
|
|
@ -853,22 +853,6 @@ module test_real_roots(){
|
||||||
}
|
}
|
||||||
test_real_roots();
|
test_real_roots();
|
||||||
|
|
||||||
// Need decision about behavior for out of bounds ranges, empty ranges
|
|
||||||
module test_submatrix(){
|
|
||||||
M = [[1,2,3,4,5],
|
|
||||||
[6,7,8,9,10],
|
|
||||||
[11,12,13,14,15],
|
|
||||||
[16,17,18,19,20],
|
|
||||||
[21,22,23,24,25]];
|
|
||||||
assert_equal(submatrix(M,[1:2], [3:4]), [[9,10],[14,15]]);
|
|
||||||
assert_equal(submatrix(M,[1], [3,4]), [[9,10]]);
|
|
||||||
assert_equal(submatrix(M,1, [3,4]), [[9,10]]);
|
|
||||||
assert_equal(submatrix(M, [3,4],1), [[17],[22]]);
|
|
||||||
assert_equal(submatrix(M, [1,3],[2,4]), [[8,10],[18,20]]);
|
|
||||||
}
|
|
||||||
test_submatrix();
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module test_qr_factor() {
|
module test_qr_factor() {
|
||||||
// Check that R is upper triangular
|
// Check that R is upper triangular
|
||||||
|
|
Loading…
Reference in a new issue