Merge pull request #667 from adrianVmariano/master

new helix() and gaussian vectors with full covariance matrix
This commit is contained in:
Revar Desmera 2021-10-01 21:27:51 -07:00 committed by GitHub
commit c0ac2d7d51
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 125 additions and 68 deletions

View file

@ -688,32 +688,49 @@ module arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false)
// Function: helix() // Function: helix()
// Description:
// Returns a 3D helical path.
// Usage: // Usage:
// helix(turns, h, n, r|d, [cp], [scale]); // helix([l|h], [turns], [angle], r|r1|r2, d|d1|d2)
// Description:
// Returns a 3D helical path on a cone, including the degerate case of flat spirals.
// You can specify start and end radii. You can give the length, the helix angle, or the number of turns: two
// of these three parameters define the helix. For a flat helix you must give length 0 and a turn count.
// Helix will be right handed if turns is positive and left handed if it is negative.
// The angle is calculateld based on the radius at the base of the helix.
// Arguments: // Arguments:
// h = Height of spiral. // h|l = Height/length of helix, zero for a flat spiral
// turns = Number of turns in spiral. // ---
// n = Number of spiral sides. // turns = Number of turns in helix, positive for right handed
// r = Radius of spiral. // angle = helix angle
// d = Radius of spiral. // r = Radius of helix
// cp = Centerpoint of spiral. Default: `[0,0]` // r1 = Radius of bottom of helix
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]` // r2 = Radius of top of helix
// d = Diameter of helix
// d1 = Diameter of bottom of helix
// d2 = Diameter of top of helix
// Example(3D): // Example(3D):
// trace_path(helix(turns=2.5, h=100, n=24, r=50), N=1, showpts=true); // trace_path(helix(turns=2.5, h=100, r=50), N=1, showpts=true);
function helix(turns=3, h=100, n=12, r, d, cp=[0,0], scale=[1,1]) = let( // Example(3D): Helix that turns the other way
rr=get_radius(r=r, d=d, dflt=100), // trace_path(helix(turns=-2.5, h=100, r=50), N=1, showpts=true);
cnt=floor(turns*n), // Example(3D): Flat helix (note points are still 3d)
dz=h/cnt // stroke(helix(h=0,r1=50,r2=25,l=0, turns=4));
) [ function helix(l,h,turns,angle, r, r1, r2, d, d1, d2)=
for (i=[0:1:cnt]) [ let(
rr * cos(i*360/n) * scale.x + cp.x, r1=get_radius(r=r,r1=r1,d=d,d1=d1,dflt=1),
rr * sin(i*360/n) * scale.y + cp.y, r2=get_radius(r=r,r1=r2,d=d,d1=d2,dflt=1),
i*dz length = first_defined([l,h])
] )
]; assert(num_defined([length,turns,angle])==2,"Must define exactly two of l/h, turns, and angle")
assert(is_undef(angle) || length!=0, "Cannot give length 0 with an angle")
let(
// length advances dz for each turn
dz = is_def(angle) && length!=0 ? 2*PI*r1*tan(angle) : length/abs(turns),
maxtheta = is_def(turns) ? 360*turns : 360*length/dz,
N = segs(max(r1,r2))
)
[for(theta=lerpn(0,maxtheta, max(3,ceil(abs(maxtheta)*N/360))))
let(R=lerp(r1,r2,theta/maxtheta))
[R*cos(theta), R*sin(theta), abs(theta)/360 * dz]];
function _normal_segment(p1,p2) = function _normal_segment(p1,p2) =

112
math.scad
View file

@ -498,83 +498,75 @@ function rand_int(minval, maxval, N, seed=undef) =
// Function: random_points() // Function: random_points()
// Usage: // Usage:
// points = random_points(n, dim, scale, [seed]); // points = random_points([N], [dim], [scale], [seed]);
// See Also: random_polygon(), gaussian_random_points(), spherical_random_points() // See Also: random_polygon(), gaussian_random_points(), spherical_random_points()
// Topics: Random, Points // Topics: Random, Points
// Description: // Description:
// Generate `n` uniform random points of dimension `dim` with data ranging from -scale to +scale. // Generate `N` uniform random points of dimension `dim` with data ranging from -scale to +scale.
// The `scale` may be a number, in which case the random data lies in a cube, // The `scale` may be a number, in which case the random data lies in a cube,
// or a vector with dimension `dim`, in which case each dimension has its own scale. // or a vector with dimension `dim`, in which case each dimension has its own scale.
// Arguments: // Arguments:
// n = number of points to generate. // N = number of points to generate. Default: 1
// dim = dimension of the points. Default: 2 // dim = dimension of the points. Default: 2
// scale = the scale of the point coordinates. Default: 1 // scale = the scale of the point coordinates. Default: 1
// seed = an optional seed for the random generation. // seed = an optional seed for the random generation.
function random_points(n, dim=2, scale=1, seed) = function random_points(N, dim=2, scale=1, seed) =
assert( is_int(n) && n>=0, "The number of points should be a non-negative integer.") assert( is_int(N) && N>=0, "The number of points should be a non-negative integer.")
assert( is_int(dim) && dim>=1, "The point dimensions should be an integer greater than 1.") assert( is_int(dim) && dim>=1, "The point dimensions should be an integer greater than 1.")
assert( is_finite(scale) || is_vector(scale,dim), "The scale should be a number or a vector with length equal to d.") assert( is_finite(scale) || is_vector(scale,dim), "The scale should be a number or a vector with length equal to d.")
let( let(
rnds = is_undef(seed) rnds = is_undef(seed)
? rands(-1,1,n*dim) ? rands(-1,1,N*dim)
: rands(-1,1,n*dim, seed) ) : rands(-1,1,N*dim, seed) )
is_num(scale) is_num(scale)
? scale*[for(i=[0:1:n-1]) [for(j=[0:dim-1]) rnds[i*dim+j] ] ] ? scale*[for(i=[0:1:N-1]) [for(j=[0:dim-1]) rnds[i*dim+j] ] ]
: [for(i=[0:1:n-1]) [for(j=[0:dim-1]) scale[j]*rnds[i*dim+j] ] ]; : [for(i=[0:1:N-1]) [for(j=[0:dim-1]) scale[j]*rnds[i*dim+j] ] ];
// Function: gaussian_rands() // Function: gaussian_rands()
// Usage: // Usage:
// arr = gaussian_rands(mean, stddev, [N], [seed]); // arr = gaussian_rands([N],[mean], [cov], [seed]);
// Description: // Description:
// Returns a random number with a gaussian/normal distribution. // Returns a random number or vector with a Gaussian/normal distribution.
// Arguments: // Arguments:
// mean = The average random number returned. // N = the number of points to return. Default: 1
// stddev = The standard deviation of the numbers to be returned. // mean = The average of the random value (a number or vector). Default: 0
// N = Number of random numbers to return. Default: 1 // cov = covariance matrix of the random numbers, or variance in the 1D case. Default: 1
// seed = If given, sets the random number seed. // seed = If given, sets the random number seed.
function gaussian_rands(mean, stddev, N=1, seed=undef) = function gaussian_rands(N=1, mean=0, cov=1, seed=undef) =
assert( is_finite(mean+stddev+N) && (is_undef(seed) || is_finite(seed) ), "Input must be finite numbers.") assert(is_num(mean) || is_vector(mean))
let(nums = is_undef(seed)? rands(0,1,N*2) : rands(0,1,N*2,seed)) let(
[for (i = count(N,0,2)) mean + stddev*sqrt(-2*ln(nums[i]))*cos(360*nums[i+1])]; dim = is_num(mean) ? 1 : len(mean)
)
assert((dim==1 && is_num(cov)) || is_matrix(cov,dim,dim),"mean and covariance matrix not compatible")
// Function: gaussian_random_points() assert(is_undef(seed) || is_finite(seed))
// Usage: let(
// points = gaussian_random_points(n, dim, mean, stddev, [seed]); nums = is_undef(seed)? rands(0,1,dim*N*2) : rands(0,1,dim*N*2,seed),
// See Also: random_polygon(), random_points(), spherical_random_points() rdata = [for (i = count(dim*N,0,2)) sqrt(-2*ln(nums[i]))*cos(360*nums[i+1])]
// Topics: Random, Points )
// Description: dim==1 ? add_scalar(sqrt(cov)*rdata,mean) :
// Generate `n` random points of dimension `dim` with coordinates absolute value less than `scale`. assert(is_matrix_symmetric(cov),"Supplied covariance matrix is not symmetric")
// The gaussian distribution of all the coordinates of the points will have a mean `mean` and let(
// standard deviation `stddev` L = cholesky(cov)
// Arguments: )
// n = number of points to generate. assert(is_def(L), "Supplied covariance matrix is not positive definite")
// dim = dimension of the points. Default: 2 move(mean,array_group(rdata,dim)*transpose(L));
// mean = the gaussian mean of the point coordinates. Default: 0
// stddev = the gaussian standard deviation of the point coordinates. Default: 0
// seed = an optional seed for the random generation.
function gaussian_random_points(n, dim=2, mean=0, stddev=1, seed) =
assert( is_int(n) && n>=0, "The number of points should be a non-negative integer.")
assert( is_int(dim) && dim>=1, "The point dimensions should be an integer greater than 1.")
let( rnds = gaussian_rands(mean, stddev, n*dim, seed=seed) )
[for(i=[0:1:n-1]) [for(j=[0:dim-1]) rnds[i*dim+j] ] ];
// Function: spherical_random_points() // Function: spherical_random_points()
// Usage: // Usage:
// points = spherical_random_points(n, radius, [seed]); // points = spherical_random_points([N], [radius], [seed]);
// See Also: random_polygon(), random_points(), gaussian_random_points() // See Also: random_polygon(), random_points(), gaussian_random_points()
// Topics: Random, Points // Topics: Random, Points
// Description: // Description:
// Generate `n` 3D uniformly distributed random points lying on a sphere centered at the origin with radius equal to `radius`. // Generate `n` 3D uniformly distributed random points lying on a sphere centered at the origin with radius equal to `radius`.
// Arguments: // Arguments:
// n = number of points to generate. // n = number of points to generate. Default: 1
// radius = the sphere radius. Default: 1 // radius = the sphere radius. Default: 1
// seed = an optional seed for the random generation. // seed = an optional seed for the random generation.
// See https://mathworld.wolfram.com/SpherePointPicking.html // See https://mathworld.wolfram.com/SpherePointPicking.html
function spherical_random_points(n, radius=1, seed) = function spherical_random_points(N=1, radius=1, seed) =
assert( is_int(n) && n>=1, "The number of points should be an integer greater than zero.") assert( is_int(n) && n>=1, "The number of points should be an integer greater than zero.")
assert( is_num(radius) && radius>0, "The radius should be a non-negative number.") assert( is_num(radius) && radius>0, "The radius should be a non-negative number.")
let( theta = is_undef(seed) let( theta = is_undef(seed)
@ -1090,6 +1082,40 @@ function _back_substitute(R, b, x=[]) =
_back_substitute(R, b, concat([newvalue],x)); _back_substitute(R, b, concat([newvalue],x));
// Function: cholesky()
// Usage:
// L = cholesky(A);
// Description:
// Compute the cholesky factor, L, of the symmetric positive definite matrix A.
// The matrix L is lower triangular and L * transpose(L) = A. If the A is
// not symmetric then an error is displayed. If the matrix is symmetric but
// not positive definite then undef is returned.
function cholesky(A) =
assert(is_matrix(A,square=true),"A must be a square matrix")
assert(is_matrix_symmetric(A),"Cholesky factorization requires a symmetric matrix")
_cholesky(A,ident(len(A)), len(A));
function _cholesky(A,L,n) =
A[0][0]<0 ? undef : // Matrix not positive definite
len(A) == 1 ? submatrix_set(L,[[sqrt(A[0][0])]], n-1,n-1):
let(
i = n+1-len(A)
)
let(
sqrtAii = sqrt(A[0][0]),
Lnext = [for(j=[0:n-1])
[for(k=[0:n-1])
j<i-1 || k<i-1 ? (j==k ? 1 : 0)
: j==i-1 && k==i-1 ? sqrtAii
: j==i-1 ? 0
: k==i-1 ? A[j-(i-1)][0]/sqrtAii
: j==k ? 1 : 0]],
Anext = submatrix(A,[1:n-1], [1:n-1]) - outer_product(list_tail(A[0]), list_tail(A[0]))/A[0][0]
)
_cholesky(Anext,L*Lnext,n);
// Function: det2() // Function: det2()
// Usage: // Usage:
// d = det2(M); // d = det2(M);

View file

@ -395,6 +395,9 @@ module skin(profiles, slices, refine=1, method="direct", sampling, caps, closed=
function skin(profiles, slices, refine=1, method="direct", sampling, caps, closed=false, z, style="min_edge") = function skin(profiles, slices, refine=1, method="direct", sampling, caps, closed=false, z, style="min_edge") =
assert(is_def(slices),"The slices argument must be specified.") assert(is_def(slices),"The slices argument must be specified.")
assert(is_list(profiles) && len(profiles)>1, "Must provide at least two profiles") assert(is_list(profiles) && len(profiles)>1, "Must provide at least two profiles")
let(
profiles = [for(p=profiles) if (is_region(p) && len(p)==1) p[0] else p]
)
let( bad = [for(i=idx(profiles)) if (!(is_path(profiles[i]) && len(profiles[i])>2)) i]) let( bad = [for(i=idx(profiles)) if (!(is_path(profiles[i]) && len(profiles[i])>2)) i])
assert(len(bad)==0, str("Profiles ",bad," are not a paths or have length less than 3")) assert(len(bad)==0, str("Profiles ",bad," are not a paths or have length less than 3"))
let( let(

View file

@ -360,14 +360,25 @@ test_rand_int();
module test_gaussian_rands() { module test_gaussian_rands() {
nums1 = gaussian_rands(0,10,1000,seed=2132); nums1 = gaussian_rands(1000,0,10,seed=2132);
nums2 = gaussian_rands(0,10,1000,seed=2130); nums2 = gaussian_rands(1000,0,10,seed=2130);
nums3 = gaussian_rands(0,10,1000,seed=2132); nums3 = gaussian_rands(1000,0,10,seed=2132);
assert_equal(len(nums1), 1000); assert_equal(len(nums1), 1000);
assert_equal(len(nums2), 1000); assert_equal(len(nums2), 1000);
assert_equal(len(nums3), 1000); assert_equal(len(nums3), 1000);
assert_equal(nums1, nums3); assert_equal(nums1, nums3);
assert(nums1!=nums2); assert(nums1!=nums2);
R = [[4,2],[2,17]];
data = gaussian_rands(100000,[0,0],R,seed=49);
assert(approx(mean(data), [0,0], eps=1e-2));
assert(approx(transpose(data)*data/len(data), R, eps=2e-2));
R2 = [[4,2,-1],[2,17,4],[-1,4,11]];
data3 = gaussian_rands(100000,[1,2,3],R2,seed=97);
assert(approx(mean(data3),[1,2,3], eps=1e-2));
cdata = move(-mean(data3),data3);
assert(approx(transpose(cdata)*cdata/len(cdata),R2,eps=.1));
} }
test_gaussian_rands(); test_gaussian_rands();