Added add_scalar(). Fixed normalize() for [0,0]. Added examples for vector functions.

This commit is contained in:
Revar Desmera 2019-07-04 23:40:24 -07:00
parent 0de637f020
commit c392741042

View file

@ -16,9 +16,32 @@
// is_vector(v) // is_vector(v)
// Description: // Description:
// Returns true if the given value is a list, and at least the first item is a number. // Returns true if the given value is a list, and at least the first item is a number.
// Example:
// is_vector([1,2,3]); // Returns: true
// is_vector([[1,2,3]]); // Returns: false
// is_vector(["foo"]); // Returns: false
// is_vector([]); // Returns: false
// is_vector(1); // Returns: false
// is_vector("foo"); // Returns: false
// is_vector(true); // Returns: false
function is_vector(v) = is_list(v) && is_num(v[0]); function is_vector(v) = is_list(v) && is_num(v[0]);
// Function: add_scalar()
// Usage:
// add_scalar(v,s);
// Description:
// Given a vector and a scalar, returns the vector with the scalar added to each item in it.
// If given a list of vectors, recursively adds the scalar to the each vector.
// Arguments:
// v = The initial list of values.
// s = A scalar value to add to every item in the vector.
// Example:
// add_scalar([1,2,3],3); // Returns: [4,5,6]
// add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]]
function add_scalar(v,s) = [for (x=v) is_list(x)? add_scalar(x,s) : x+s];
// Function: vmul() // Function: vmul()
// Description: // Description:
// Element-wise vector multiplication. Multiplies each element of vector `v1` by // Element-wise vector multiplication. Multiplies each element of vector `v1` by
@ -47,6 +70,8 @@ function vdiv(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
// Description: Returns a vector of the absolute value of each element of vector `v`. // Description: Returns a vector of the absolute value of each element of vector `v`.
// Arguments: // Arguments:
// v = The vector to get the absolute values of. // v = The vector to get the absolute values of.
// Example:
// vabs([-1,3,-9]); // Returns: [1,3,9]
function vabs(v) = [for (x=v) abs(x)]; function vabs(v) = [for (x=v) abs(x)];
@ -56,7 +81,13 @@ function vabs(v) = [for (x=v) abs(x)];
// If passed a zero-length vector, returns the unchanged vector. // If passed a zero-length vector, returns the unchanged vector.
// Arguments: // Arguments:
// v = The vector to normalize. // v = The vector to normalize.
function normalize(v) = v==[0,0,0]? v : v/norm(v); // Examples:
// normalize([10,0,0]); // Returns: [1,0,0]
// normalize([0,10,0]); // Returns: [0,1,0]
// normalize([0,0,10]); // Returns: [0,0,1]
// normalize([0,-10,0]); // Returns: [0,-1,0]
// normalize([0,0,0]); // Returns: [0,0,0]
function normalize(v) = norm(v)<=EPSILON? v : v/norm(v);
// Function: vquant() // Function: vquant()
@ -67,6 +98,16 @@ function normalize(v) = v==[0,0,0]? v : v/norm(v);
// Arguments: // Arguments:
// v = The vector to quantize. // v = The vector to quantize.
// m = The multiple to quantize to. // m = The multiple to quantize to.
// Examples:
// vquant(12,4); // Returns: 12
// vquant(13,4); // Returns: 12
// vquant(14,4); // Returns: 16
// vquant(15,4); // Returns: 16
// vquant(16,4); // Returns: 16
// vquant(9,3); // Returns: 9
// vquant(10,3); // Returns: 9
// vquant(11,3); // Returns: 12
// vquant(12,3); // Returns: 12
function vquant(v,m) = [for (x=v) quant(x,m)]; function vquant(v,m) = [for (x=v) quant(x,m)];
@ -78,6 +119,16 @@ function vquant(v,m) = [for (x=v) quant(x,m)];
// Arguments: // Arguments:
// v = The vector to quantize. // v = The vector to quantize.
// m = The multiple to quantize to. // m = The multiple to quantize to.
// Examples:
// vquant(12,4); // Returns: 12
// vquant(13,4); // Returns: 12
// vquant(14,4); // Returns: 12
// vquant(15,4); // Returns: 12
// vquant(16,4); // Returns: 16
// vquant(9,3); // Returns: 9
// vquant(10,3); // Returns: 9
// vquant(11,3); // Returns: 9
// vquant(12,3); // Returns: 12
function vquantdn(v,m) = [for (x=v) quantdn(x,m)]; function vquantdn(v,m) = [for (x=v) quantdn(x,m)];
@ -89,6 +140,16 @@ function vquantdn(v,m) = [for (x=v) quantdn(x,m)];
// Arguments: // Arguments:
// v = The vector to quantize. // v = The vector to quantize.
// m = The multiple to quantize to. // m = The multiple to quantize to.
// Examples:
// vquant(12,4); // Returns: 12
// vquant(13,4); // Returns: 16
// vquant(14,4); // Returns: 16
// vquant(15,4); // Returns: 16
// vquant(16,4); // Returns: 16
// vquant(9,3); // Returns: 9
// vquant(10,3); // Returns: 12
// vquant(11,3); // Returns: 12
// vquant(12,3); // Returns: 12
function vquantup(v,m) = [for (x=v) quantup(x,m)]; function vquantup(v,m) = [for (x=v) quantup(x,m)];
@ -100,13 +161,19 @@ function vquantup(v,m) = [for (x=v) quantup(x,m)];
// Description: // Description:
// If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2. // If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
// If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC. // If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
// If given two vectors, like `vector_angle(V1,V1)`, returns the angle between the two vectors V1 and V2. // If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
// If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC. // If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
// Arguments: // Arguments:
// v1 = First vector or point. // v1 = First vector or point.
// v2 = Second vector or point. // v2 = Second vector or point.
// v3 = Third point in three point mode. // v3 = Third point in three point mode.
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain. // Examples:
// vector_angle(UP,LEFT); // Returns: 90
// vector_angle(RIGHT,LEFT); // Returns: 180
// vector_angle(UP+RIGHT,RIGHT); // Returns: 45
// vector_angle([10,10], [0,0], [10,-10]); // Returns: 90
// vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
// vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
function vector_angle(v1,v2=undef,v3=undef) = function vector_angle(v1,v2=undef,v3=undef) =
(is_list(v1) && is_list(v1[0]) && is_undef(v2) && is_undef(v3))? ( (is_list(v1) && is_list(v1[0]) && is_undef(v2) && is_undef(v3))? (
assert(is_vector(v1.x)) assert(is_vector(v1.x))
@ -116,6 +183,7 @@ function vector_angle(v1,v2=undef,v3=undef) =
assert(false, "Bad arguments.") assert(false, "Bad arguments.")
) : ) :
(is_vector(v1) && is_vector(v2) && is_vector(v3))? vector_angle(v1-v2, v3-v2) : (is_vector(v1) && is_vector(v2) && is_vector(v3))? vector_angle(v1-v2, v3-v2) :
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
(is_vector(v1) && is_vector(v2) && is_undef(v3))? acos(constrain((v1*v2)/(norm(v1)*norm(v2)), -1, 1)) : (is_vector(v1) && is_vector(v2) && is_undef(v3))? acos(constrain((v1*v2)/(norm(v1)*norm(v2)), -1, 1)) :
assert(false, "Bad arguments."); assert(false, "Bad arguments.");
@ -134,6 +202,13 @@ function vector_angle(v1,v2=undef,v3=undef) =
// v1 = First vector or point. // v1 = First vector or point.
// v2 = Second vector or point. // v2 = Second vector or point.
// v3 = Third point in three point mode. // v3 = Third point in three point mode.
// Examples:
// vector_axis(UP,LEFT); // Returns: [0,-1,0] (FWD)
// vector_axis(RIGHT,LEFT); // Returns: [0,-1,0] (FWD)
// vector_axis(UP+RIGHT,RIGHT); // Returns: [0,1,0] (BACK)
// vector_axis([10,10], [0,0], [10,-10]); // Returns: [0,0,-1] (DOWN)
// vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735]
// vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735]
function vector_axis(v1,v2=undef,v3=undef) = function vector_axis(v1,v2=undef,v3=undef) =
(is_list(v1) && is_list(v1[0]) && is_undef(v2) && is_undef(v3))? ( (is_list(v1) && is_list(v1[0]) && is_undef(v2) && is_undef(v3))? (
assert(is_vector(v1.x)) assert(is_vector(v1.x))