mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Review of vnf_centroid()
This commit is contained in:
parent
376609d52f
commit
c5799d6539
2 changed files with 8 additions and 11 deletions
|
@ -74,7 +74,8 @@ module test_vnf_centroid() {
|
|||
assert_approx(vnf_centroid(cube(100, anchor=TOP)), [0,0,-50]);
|
||||
assert_approx(vnf_centroid(sphere(d=100, anchor=CENTER, $fn=36)), [0,0,0]);
|
||||
assert_approx(vnf_centroid(sphere(d=100, anchor=BOT, $fn=36)), [0,0,50]);
|
||||
}
|
||||
ellipse = xscale(2, p=circle($fn=24, r=3));
|
||||
assert_approx(vnf_centroid(path_sweep(pentagon(r=1), path3d(ellipse), closed=true)),[0,0,0]);}
|
||||
test_vnf_centroid();
|
||||
|
||||
|
||||
|
|
16
vnf.scad
16
vnf.scad
|
@ -450,18 +450,13 @@ function vnf_volume(vnf) =
|
|||
// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
|
||||
// no holes; otherwise the results are undefined.
|
||||
|
||||
// Divide the solid up into tetrahedra with the origin as one vertex. The centroid of a tetrahedron is the average of its vertices.
|
||||
// Divide the solid up into tetrahedra with the origin as one vertex.
|
||||
// The centroid of a tetrahedron is the average of its vertices.
|
||||
// The centroid of the total is the volume weighted average.
|
||||
function vnf_centroid(vnf) =
|
||||
assert(is_vnf(vnf) && len(vnf[0])!=0 )
|
||||
let(
|
||||
verts = vnf[0],
|
||||
vol = sum([
|
||||
for(face=vnf[1], j=[1:1:len(face)-2]) let(
|
||||
v0 = verts[face[0]],
|
||||
v1 = verts[face[j]],
|
||||
v2 = verts[face[j+1]]
|
||||
) cross(v2,v1)*v0
|
||||
]),
|
||||
pos = sum([
|
||||
for(face=vnf[1], j=[1:1:len(face)-2]) let(
|
||||
v0 = verts[face[0]],
|
||||
|
@ -469,10 +464,11 @@ function vnf_centroid(vnf) =
|
|||
v2 = verts[face[j+1]],
|
||||
vol = cross(v2,v1)*v0
|
||||
)
|
||||
(v0+v1+v2)*vol
|
||||
[ vol, (v0+v1+v2)*vol ]
|
||||
])
|
||||
)
|
||||
pos/vol/4;
|
||||
assert(!approx(pos[0],0, EPSILON), "The vnf has self-intersections.")
|
||||
pos[1]/pos[0]/4;
|
||||
|
||||
|
||||
function _triangulate_planar_convex_polygons(polys) =
|
||||
|
|
Loading…
Reference in a new issue