diff --git a/bosl1compat.scad b/bosl1compat.scad index fb512b9..686a33f 100644 --- a/bosl1compat.scad +++ b/bosl1compat.scad @@ -29,11 +29,11 @@ module chamfcube(size=[1,1,1],chamfer=0.25,chamfaxes=[1,1,1],chamfcorners=false) cuboid( size=size, chamfer=chamfer, trimcorners=chamfcorners, - edges=concat( - chamfaxes[0]? ["X"] : [], - chamfaxes[1]? ["Y"] : [], - chamfaxes[2]? ["Z"] : [] - ) + edges=[ + if (chamfaxes.x) "X", + if (chamfaxes.y) "Y", + if (chamfaxes.z) "Z", + ] ); } diff --git a/skin.scad b/skin.scad index 7dea509..60fe4a3 100644 --- a/skin.scad +++ b/skin.scad @@ -2098,20 +2098,343 @@ function associate_vertices(polygons, split, curpoly=0) = // Section: Texturing -// DefineHeader(Table;Headers=Texture Name|Description): Texture Values +// DefineHeader(Table;Headers=Texture Name|Type|Description): Texture Values -function _get_texture(tex,n,m) = +// Function: get_texture() +// Usage: +// tx = get_texture(tex, [n], [m]); +// Topics: Textures, Knurling +// Description: +// Given a texture name, and two optional variables, returns a heightfield texture as a 2D array of scalars. +// Arguments: +// tex = The name of the texture to get. +// n = Generally the number of vertices in one axis to make the texture from. Depends on the texture. +// m = Generally the texture height. Depends on the texture. +// Texture Values: +// "bricks" = Heightfield = A brick-wall pattern. +// "diamonds" = Heightfield = Diamond shapes with tips aligned with the axes. Useful for knurling. +// "hills" = Heightfield = Wavy sine-wave hills and valleys, +// "pyramids" = Heightfield = Pyramids shapes with flat sides aligned with the axes. Also useful for knurling. +// "ribs" = Heightfield = Vertically aligned triangular ribs. +// "rough" = Heightfield = A pseudo-randomized rough surace texture. +// "trunc_pyramids" = Heightfield = Like "pyramids" but with flattened tips. +// "trunc_ribs" = Heightfield = Like "ribs" but with flat rib tips. +// "wave_ribs" = Heightfield = Vertically aligned wavy ribs. +// "vnf_bricks" = VNF Tile = Like "bricks", but slower and more consistent in triangulation. +// "vnf_checkers" = VNF Tile = A pattern of alternating checkerboard squares. +// "vnf_cones" = VNF Tile = Raised conical spikes. +// "vnf_cubes" = VNF Tile = Cornercubes texture. +// "vnf_diagonal_grid" = VNF Tile = A grid of thin lines at 45º angles. +// "vnf_diamonds" = VNF Tile = Like "diamonds", but slower and more consistent in triangulation. +// "vnf_dimples" = VNF Tile = Small round divots. +// "vnf_dots" = VNF Tile = Raised small round bumps. +// "vnf_hex_grid" = VNF Tile = A hexagonal grid of thin lines. +// "vnf_pyramids" = VNF Tile = Like "pyramids", but slower and more consistent in triangulation. +// "vnf_trunc_pyramids" = VNF Tile = Like "trunc_pyramids", but slower and more consistent in triangulation. +// See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield(), get_texture() +// Example: "ribs" texture. +// tex = get_texture("ribs"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[5,10], style="concave" +// ); +// Example: Truncated "trunc_ribs" texture. +// tex = get_texture("trunc_ribs"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[5,10], style="concave" +// ); +// Example: "wave_ribs" texture. +// tex = get_texture("wave_ribs"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], style="concave" +// ); +// Example: "diamonds" texture. +// tex = get_texture("diamonds"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], style="concave" +// ); +// Example: "vnf_diamonds" texture. Slower, but more consistent around complex curves. +// tex = get_texture("vnf_diamonds"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], +// ); +// Example: "pyramids" texture. +// tex = get_texture("pyramids"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], style="convex" +// ); +// Example: "vnf_pyramids" texture. Slower, but more consistent around complex curves. +// tex = get_texture("vnf_pyramids"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], +// ); +// Example: "trunc_pyramids" texture. +// tex = get_texture("trunc_pyramids"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], style="convex" +// ); +// Example: "vnf_trunc_pyramids" texture. Slower, but more consistent around complex curves. +// tex = get_texture("vnf_trunc_pyramids"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], +// ); +// Example: "hills" texture. +// tex = get_texture("hills"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], style="quincunx" +// ); +// Example: "vnf_dots" texture. +// tex = get_texture("vnf_dots"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], +// ); +// Example: "vnf_dimples" texture. +// tex = get_texture("vnf_dimples"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], +// ); +// Example: "vnf_cones" texture. +// tex = get_texture("vnf_cones"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], +// ); +// Example: "bricks" texture. +// tex = get_texture("bricks"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], +// ); +// Example: "vnf_bricks" texture. +// tex = get_texture("vnf_bricks"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], +// ); +// Example: "vnf_diagonal_grid" texture. +// tex = get_texture("vnf_diagonal_grid"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], +// ); +// Example: "vnf_hex_grid" texture. +// tex = get_texture("vnf_hex_grid"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[12.5,20], +// ); +// Example: "vnf_checkers" texture. +// tex = get_texture("vnf_checkers"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], +// ); +// Example: "rough" texture. +// tex = get_texture("rough"); +// textured_linear_sweep( +// rect(50), tex, h=40, +// tex_size=[10,10], style="min_edge" +// ); +function get_texture(tex,n,m,o) = tex=="ribs"? [[1,0]] : - tex=="trunc_ribs"? [[0, each repeat(1,default(n,1)), 1]] : + tex=="trunc_ribs"? [[each repeat(0,default(n,1)+1), each repeat(1,default(n,1)+1)]] : tex=="wave_ribs"? [[for(a=[0:360/default(n,8):359]) (cos(a)+1)/2]] : - tex=="diamonds"? [[1,0],[0,1]] : - tex=="pyramids"? [[0,0],[0,1]] : - tex=="trunc_pyramids"? let(n=default(n,2)) [repeat(0,n+1), each repeat([0, each repeat(1,n+1)], n+1)] : - tex=="dimpled_pyramids"? [[0,0,0,0],[0,1,1,1],[0,1,0,1],[0,1,1,1]] : - tex=="hills"? let(n=default(n,12)) [for (a=[0:360/n:359.999]) [for (b=[0:360/n:359.999]) (cos(a)*cos(b)+1)/2]] : - tex=="waves"? let(n=default(n,12)) [for (v=[0:360/n:359.999]) [for (h=[0:360/n:359.999]) max(0,cos(h+90*cos(v)))]] : - tex=="dots"? let(n=default(n,12), m=default(m,0)) [for (y=[0:1:n-1]) [for (x=[0:1:n-1]) max(0,cos(90*norm([n,n]/2-[x,y])*2/(n-m))) ]] : - tex=="cones"? let(n=default(n,12), m=default(m,0)) [for (y=[0:1:n-1]) [for (x=[0:1:n-1]) max(0,1-(norm([n,n]/2-[x,y])*2/(n-m))) ]] : + tex=="diamonds"? let(m=default(m,1)) [[m,0],[0,m]] : + tex=="vnf_diamonds"? let(m=default(m,1)) [ + [ + [0, 1,m], [1/2, 1,0], [1, 1,m], + [0,1/2,0], [1/2,1/2,m], [1,1/2,0], + [0, 0,m], [1/2, 0,0], [1, 0,m], + ], [ + [0,1,3], [2,5,1], [8,7,5], [6,3,7], + [1,5,4], [5,7,4], [7,3,4], [4,3,1], + ] + ] : + tex=="pyramids"? let(m=default(m,1)) [[0,0],[0,m]] : + tex=="vnf_pyramids"? let(m=default(m,1)) [ + [ [0,1,0], [1,1,0], [1/2,1/2,m], [0,0,0], [1,0,0] ], + [ [2,0,1], [2,1,4], [2,4,3], [2,3,0] ] + ] : + tex=="trunc_pyramids"? let(n=default(n,3), m=default(m,1)) [repeat(0,n+1), each repeat([0, each repeat(m,n+1)], n+1)] : + tex=="vnf_trunc_pyramids"? let(n=default(n,0.25), m=default(m,1)) [ + [ + each path3d(square(1)), + each move([1/2,1/2,m], p=path3d(rect(1-2*n))), + ], [ + for (i=[0:3]) each [ + [i, (i+1)%4, i+4], + [(i+1)%4, (i+1)%4+4, i+4], + ], + [4,5,6], [4,6,7], + ] + ] : + tex=="hills"? let(n=default(n,12)) [ + for (a=[0:360/n:359.999]) [ + for (b=[0:360/n:359.999]) + (cos(a)*cos(b)+1)/2 + ] + ] : + tex=="bricks"? let(n=default(n,16), m=default(m,0.05)) [ + for (y = [0:1:n*2-1]) + rands(-m/2, m/2, 2*n, seed=12345+y*678) + [ + for (x = [0:1:2*n-1]) + (y%n <= max(1,n/16))? 0 : + let( even = floor(y/n)%2? n : 0 ) + (x+even) % (2*n) <= max(1,n/16)? 0 : 0.5 + ] + ] : + tex=="vnf_bricks"? let( + h=default(n,1), + gap=default(m,0.05), + inset=default(o,0.1) + ) [ + [ + each path3d(square(1)), + each move([gap/2, gap/2, 0], p=path3d(square([1-gap, 0.5-gap]))), + each move([gap/2+inset/2, gap/2+inset/2, h], p=path3d(square([1-gap-inset, 0.5-gap-inset]))), + each move([0, 0.5+gap/2, 0], p=path3d(square([0.5-gap/2, 0.5-gap]))), + each move([0, 0.5+gap/2+inset/2, h], p=path3d(square([0.5-gap/2-inset/2, 0.5-gap-inset]))), + each move([0.5+gap/2, 0.5+gap/2, 0], p=path3d(square([0.5-gap/2, 0.5-gap]))), + each move([0.5+gap/2+inset/2, 0.5+gap/2+inset/2, h], p=path3d(square([0.5-gap/2-inset/2, 0.5-gap-inset]))), + ], [ + [ 8, 9,10], [ 8,10,11], [16,17,18], [16,18,19], [24,25,26], + [24,26,27], [ 0, 1, 5], [ 0, 5, 4], [ 1,13, 6], [ 1, 6, 5], + [ 6,13,12], [ 6,12,21], [ 7,21,20], [ 6,21, 7], [ 0, 4, 7], + [ 0, 7,20], [21,12,15], [21,15,22], [ 3,23,22], [ 3,22,15], + [ 2,15,14], [ 2, 3,15], [23,27,26], [23,26,22], [21,22,26], + [21,26,25], [21,25,24], [21,24,20], [12,16,19], [12,19,15], + [14,15,19], [14,19,18], [13,17,16], [13,16,12], [ 6,10, 9], + [ 6, 9, 5], [ 5, 9, 8], [ 5, 8, 4], [ 4, 8,11], [ 4,11, 7], + [ 7,11,10], [ 7,10, 6], + ] + ] : + tex=="vnf_checkers"? let(n=default(n,0.05), m=default(m,1)) [ + [ + each move([0,0], p=path3d(square(0.5-n),m)), + each move([0,0.5], p=path3d(square(0.5-n))), + each move([0.5,0], p=path3d(square(0.5-n))), + each move([0.5,0.5], p=path3d(square(0.5-n),m)), + [1/2-n/2,1/2-n/2,m/2], [0,1,m], [1/2-n,1,m], + [1/2,1,0], [1-n,1,0], [1,0,m], [1,1/2-n,m], + [1,1/2,0], [1,1-n,0], [1,1,m], [1/2-n/2,1-n/2,m/2], + [1-n/2,1-n/2,m/2], [1-n/2,1/2-n/2,m/2], + ], [ + for (i=[0:4:12]) each [[i,i+1,i+2], [i, i+2, i+3]], + [10,13,11], [13,12,11], [2,5,4], [4,3,2], + [0,3,10], [10,9,0], [4,7,14], [4,14,13], + [4,13,16], [10,16,13], [10,3,16], [3,4,16], + [7,6,17], [7,17,18], [14,19,20], [14,20,15], + [8,11,22], [8,22,21], [12,15,24], [12,24,23], + [7,18,26], [7,26,14], [14,26,19], [18,19,26], + [15,20,27], [20,25,27], [24,27,25], [15,27,24], + [11,12,28], [12,23,28], [11,28,22], [23,22,28], + ] + ] : + tex=="vnf_cones"? let(n=quant(default(n,12),4), m=default(m,1)) [ + [ + each move([1/2,1/2], p=path3d(circle(d=1,$fn=n))), + [1/2,1/2,m], + each path3d(square(1)), + ], [ + for (i=[0:1:n-1]) [i, (i+1)%n, n], + for (i=[0:1:3], j=[0:1:n/4-1]) [n+1+i, (i*n/4+j+1)%n, i*n/4+j], + ] + ] : + tex=="vnf_cubes"? let(m=default(m,1)) [ + [ + [0,1,m/2], [1,1,m/2], [1/2,5/6,m], [0,4/6,0], [1,4/6,0], + [1/2,3/6,m/2], [0,2/6,m], [1,2/6,m], [1/2,1/6,0], [0,0,m/2], + [1,0,m/2], + ], [ + [0,1,2], [0,2,3], [1,4,2], [2,5,3], [2,4,5], + [6,3,5], [4,7,5], [7,8,5], [6,5,8], [10,8,7], + [9,6,8], [10,9,8], + ] + ] : + tex=="vnf_diagonal_grid"? let(m=default(m,1)) [ + [ + each move([1/2,1/2,0], p=path3d(circle(d=1,$fn=4))), + each move([1/2,1/2,m], p=path3d(circle(d=0.8,$fn=4))), + for (a=[0:90:359]) each move([1/2,1/2], p=zrot(-a, p=[[1/2,0.1,m], [0.1,1/2,m], [1/2,1/2,m]])) + ], [ + for (i=[0:3]) each let(j=i*3+8) [ + [i,(i+1)%4,(i+1)%4+4], [i,(i+1)%4+4,i+4], + [j,j+1,j+2], [i, (i+3)%4, j], [(i+3)%4, j+1, j], + ], + [4,5,6], [4,6,7], + ] + ] : + tex=="vnf_dimples" || tex=="vnf_dots" ? let( + n = quant(default(n,12),4), + m = default(m,0.05), + rows=ceil(n/4), + r=adj_ang_to_hyp(1/2-m,45), + dots = tex=="vnf_dots", + cp=[1/2, 1/2, r*sin(45)*(dots?-1:1)] + ) [ + [ + each path3d(square(1)), + for (p=[0:1:rows-1], t=[0:360/n:359.999]) + cp + ( + dots? spherical_to_xyz(r, -t, 45-45*p/rows) : + spherical_to_xyz(r, -t, 135+45*p/rows) + ), + cp + r * (dots?UP:DOWN), + ], [ + for (i=[0:1:3], j=[0:1:n/4-1]) [i, 4+(i*n/4+j+1)%n, 4+i*n/4+j], + for (i=[0:1:rows-2], j=[0:1:n-1]) each [ + [4+i*n+j, 4+(i+1)*n+(j+1)%n, 4+(i+1)*n+j], + [4+i*n+j, 4+i*n+(j+1)%n, 4+(i+1)*n+(j+1)%n], + ], + for (i=[0:1:n-1]) [4+(rows-1)*n+i, 4+(rows-1)*n+(i+1)%n, 4+rows*n], + if (m>0) for (i=[0:3]) [i, (i+1)%4, 4+(i+1)%4*n/4] + ] + ] : + tex=="vnf_hex_grid"? let( + h=default(n,1), inset=default(m,0.1), + diag=opp_ang_to_hyp(inset,60), + side=adj_ang_to_opp(1,30), + hyp=adj_ang_to_hyp(0.5,30), + check=assert(inset<0.5), + sc = 1/3/hyp, + hex=[ [1,2/6,0], [1/2,1/6,0], [0,2/6,0], [0,4/6,0], [1/2,5/6,0], [1,4/6,0] ] + ) [ + [ + each hex, + each move([0.5,0.5], p=yscale(sc, p=path3d(ellipse(d=1-2*inset, circum=true, spin=-30,$fn=6),h))), + hex[0]-[0,diag*sc,-h], + for (ang=[270+60,270-60]) hex[1]+yscale(sc, p=cylindrical_to_xyz(diag,ang,h)), + hex[2]-[0,diag*sc,-h], + [0,0,h], [0.5-inset,0,h], [0.5,0,0], [0.5+inset,0,h], [1,0,h], + hex[3]+[0,diag*sc,h], + for (ang=[90+60,90-60]) hex[4]+yscale(sc, p=cylindrical_to_xyz(diag,ang,h)), + hex[5]+[0,diag*sc,h], + [0,1,h], [0.5-inset,1,h], [0.5,1,0], [0.5+inset,1,h], [1,1,h], + ], [ + for (i=[0:2:5]) let(b=6) [b+i, b+(i+1)%6, b+(i+2)%6], [6,8,10], + for (i=[0:1:5]) each [ [i, (i+1)%6, (i+1)%6+6], [i, (i+1)%6+6, i+6] ], + [19,13,12], [19,12,20], [17,16,15], [17,15,14], + [21,25,26], [21,26,22], [23,28,29], [23,29,24], + [0,12,13], [0,13,1], [1,14,15], [1,15,2], + [3,21,22], [3,22,4], [4,23,24], [4,24,5], + [1,13,19], [1,19,18], [1,18,17], [1,17,14], + [4,22,26], [4,26,27], [4,27,28], [4,28,23], + ] + ] : + tex=="rough"? let(n=default(n,32), m=default(m,0.1)) [ + for (y = [0:1:n-1]) rands(0, m, n, seed=123456+29*y) + ] : assert(false, str("Unrecognized texture name: ", tex)); @@ -2124,12 +2447,23 @@ function _get_texture(tex,n,m) = // textured_linear_sweep(path, texture, counts=, h=, ...) [ATTACHMENTS]; // Topics: Sweep, Extrusion, Textures, Knurling // Description: -// Given a single polygon path, creates a linear extrusion of that polygon vertically, with a given texture tiled evenly over the side surfaces. +// Given a single polygon path, creates a linear extrusion of that polygon vertically, optionally twisted, +// scaled, and/or shifted, with a given texture tiled evenly over the side surfaces. +// If the path to be swept is clockwise on the XY plane, then the output shape should have its faces pointed outwards, +// though you can use `reverse=true` to reverse the face directions if needed. It is recommended that you preview with +// OpenSCAD's "Thrown Together" view mode, to verify the orientation of the faces. If you see purple, then your model is +// non-manifold, and not 3D print-able. +// The texture can be given in one of three ways: +// - As a texture name string. (See {{get_texture()}} for supported named textures.) +// - As a 2D array of evenly spread height values. (AKA a heightfield.) +// - As a VNF texture tile. A VNF tile exactly defines a surface from `[0,0]` to `[1,1]`, with the Z coordinates +// being the height of the texture point from the surface. VNF tiles MUST be able to tile in both X and Y +// directions with no gaps, with the front and back edges aligned exactly, and the left and right edges as well. // One script to convert a grayscale image to a texture heightfield array in a .scad file can be found at: // https://raw.githubusercontent.com/revarbat/BOSL2/master/scripts/img2scad.py // Arguments: // path = The path to sweep/extrude. -// texture = A texture name string, or a rectangular array of scalar height values (0.0 to 1.0) that define the texture to apply to vertical surfaces. +// texture = A texture name string, or a rectangular array of scalar height values (0.0 to 1.0), or a VNF tile that defines the texture to apply to vertical surfaces. See {{get_texture()}} for what named textures are supported. // tex_size = An optional 2D target size for the textures. Actual texture sizes will be scaled somewhat to evenly fit the available surface. Default: `[5,5]` // h / l = The height to extrude/sweep the path. // --- @@ -2142,83 +2476,60 @@ function _get_texture(tex,n,m) = // shift = [X,Y] amount to translate the top, relative to the bottom. Default: [0,0] // caps = (function only) If true, create endcaps for the extruded shape. // col_wrap = (function only) If true, the path is considered a closed polygon. -// style = The triangulation style used. See {{vnf_vertex_array()}} for valid styles. Default: `"min_edge"` +// style = The triangulation style used. See {{vnf_vertex_array()}} for valid styles. Used only with heightfield type textures. Default: `"min_edge"` // reverse = If the default faces are facing the wrong way, you can reverse them by setting this to `true`. Default: `false` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` -// Texture Values: -// "ribs" = Vertically aligned triangular ribs. -// "trunc_ribs" = Like "ribs" but with flat rib tips. -// "wave_ribs" = Vertically aligned wavy ribs. -// "diamonds" = Diamond shapes with tips aligned with the axes. Useful for knurling. -// "pyramids" = Pyramids shapes with flat sides aligned with the axes. Also useful for knurling. -// "trunc_pyramids" = Like "pyramids" but with flattened tips. -// "dimpled_pyramids" = Like "trunc_pyramids" but with dimples in the flat tips. -// "hills" = Wavy hills and valleys, -// "waves" = A raised sine-wave patten, oriented vertically. -// "dots" = Raised small round bumps. -// "cones" = Raised conical spikes. // Extra Anchors: // centroid_top = The centroid of the top of the shape, oriented UP. // centroid = The centroid of the center of the shape, oriented UP. // centroid_bot = The centroid of the bottom of the shape, oriented DOWN. -// See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield() -// Example: "ribs" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, h=40, "ribs", tex_size=[3,5]); -// Example: Rotated "ribs" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, h=40, "ribs", tex_size=[3,5], rot=true); -// Example: Truncated "trunc_ribs" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, h=40, "trunc_ribs", tex_size=[3,5]); -// Example: "wave_ribs" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, h=40, "wave_ribs", tex_size=[3,5]); +// See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield(), get_texture() // Example: "diamonds" texture. // path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, "diamonds", tex_size=[5,10], h=40, style="concave"); +// textured_linear_sweep( +// path, "diamonds", tex_size=[5,10], +// h=40, style="concave"); // Example: "pyramids" texture. +// textured_linear_sweep( +// rect(50), "pyramids", tex_size=[10,10], +// h=40, style="concave"); +// Example: "vnf_bricks" texture. // path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, h=40, "pyramids", tex_size=[5,5], style="convex"); -// Example: Inverted "pyramids" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, h=40, "pyramids", tex_size=[5,5], tscale=-1, style="concave"); -// Example: "trunc_pyramids" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, h=40, "trunc_pyramids", tex_size=[5,5], style="convex"); -// Example: "trunc_pyramids" with style="concave". -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, h=40, "trunc_pyramids", tex_size=[5,5], style="concave"); -// Example: Inverted "trunc_pyramids" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, h=40, "trunc_pyramids", tex_size=[5,5], tscale=-1, style="concave"); -// Example: "dimpled_pyramids" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, h=40, "dimpled_pyramids", tex_size=[5,5], style="convex"); -// Example: "hills" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, "hills", tex_size=[5,5], h=40, style="quincunx"); -// Example: "waves" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, "waves", tex_size=[5,10], h=40, style="min_edge"); -// Example: "dots" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, "dots", tex_size=[5,5], h=40, style="concave"); -// Example: Inverted "dots" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, "dots", tex_size=[5,5], tscale=-1, h=40, style="concave"); -// Example: "cones" texture. -// path = glued_circles(r=15, spread=40, tangent=45); -// textured_linear_sweep(path, "cones", tex_size=[5,5], h=40, style="concave"); -// Example: User defined texture. +// textured_linear_sweep( +// path, "vnf_bricks", tex_size=[10,10], +// tscale=0.25, h=40); +// Example: User defined heightfield texture. // path = ellipse(r=[20,10]); -// texture = [for (i=[0:9]) [ for (j=[0:9]) 1/max(0.5,norm([i,j]-[5,5])) ]]; -// textured_linear_sweep(path, texture, tex_size=[5,5], h=40, style="min_edge", anchor=BOT); +// texture = [for (i=[0:9]) +// [for (j=[0:9]) +// 1/max(0.5,norm([i,j]-[5,5])) ]]; +// textured_linear_sweep( +// path, texture, tex_size=[5,5], +// h=40, style="min_edge", anchor=BOT); +// Example: User defined VNF tile texture. +// path = ellipse(r=[20,10]); +// tex = let(n=16,m=0.25) [ +// [ +// each resample_path(path3d(square(1)),n), +// each move([0.5,0.5], +// p=path3d(circle(d=0.5,$fn=n),m)), +// [1/2,1/2,0], +// ], [ +// for (i=[0:1:n-1]) each [ +// [i,(i+1)%n,(i+3)%n+n], +// [i,(i+3)%n+n,(i+2)%n+n], +// [2*n,n+i,n+(i+1)%n], +// ] +// ] +// ]; +// textured_linear_sweep(path, tex, tex_size=[5,5], h=40); // Example: As Function // path = glued_circles(r=15, spread=40, tangent=45); -// vnf = textured_linear_sweep(path, h=40, "trunc_pyramids", tex_size=[5,5], tscale=1, style="convex"); +// vnf = textured_linear_sweep( +// path, h=40, "trunc_pyramids", tex_size=[5,5], +// tscale=1, style="convex"); // vnf_polyhedron(vnf, convexity=10); function textured_linear_sweep( path, texture, @@ -2234,9 +2545,15 @@ function textured_linear_sweep( assert(is_bool(reverse)) assert(counts==undef || is_vector(counts,2)) assert(tex_size==undef || is_vector(tex_size,2)) + assert(is_bool(rot) || in_list(rot,[0,90,180,270])) let( - tex = is_string(texture)? _get_texture(texture) : texture, - texture = rot? transpose(tex) : tex, + tex = is_string(texture)? get_texture(texture) : texture, + path = col_wrap && is_polygon_clockwise(path)? reverse(path) : path, + texture = !rot? tex : + is_vnf(tex)? zrot(is_num(rot)?rot:90, cp=[1/2,1/2], p=tex) : + rot==180? reverse([for (row=tex) reverse(row)]) : + rot==270? [for (row=transpose(tex)) reverse(row)] : + reverse(transpose(tex)), twist = default(twist, 0), shift = default(shift, [0,0]), scale = scale==undef? [1,1,1] : is_num(scale)? [scale,scale,1] : scale, @@ -2245,32 +2562,105 @@ function textured_linear_sweep( counts = is_vector(counts,2)? counts : is_vector(tex_size,2) ? [round(plen/tex_size.x), max(1,round(h/tex_size.y)), ] - : [30, 5], - texcnt = [len(texture[0]), len(texture)], + : [ceil(6*plen/h), 6], inset = is_num(inset)? inset : inset? 1 : 0, - xcnt = counts.x * texcnt.x, - ycnt = counts.y * texcnt.y, - bases = resample_path(path, n=xcnt+(col_wrap?0:1), closed=col_wrap), - norms = path_normals(bases, closed=col_wrap), - tiles = [ - for (i = [0:1:ycnt]) + samples = is_vnf(texture)? 12 : len(texture[0]), + obases = resample_path(path, n=counts.x * samples, closed=col_wrap), + onorms = path_normals(obases, closed=col_wrap), + bases = col_wrap? close_path(obases) : obases, + norms = col_wrap? close_path(onorms) : onorms, + vnf = is_vnf(texture) + ? let( // VNF tile texture + bounds = pointlist_bounds(texture[0]), + min_xy = point2d(bounds[0]), + max_xy = point2d(bounds[1]) + ) + assert(min_xy==[0,0] && max_xy==[1,1], "VNF tiles must span exactly from [0,0] to [1,1] in the X and Y components.") let( - u = i / ycnt, - row = texture[i % texcnt.y], - levpts = [ - for (j = [0:1:xcnt-(col_wrap?1:0)]) + hverts = [for(v = texture[0]) if(v.x==0 || v.x==1) v], + vverts = [for(v = texture[0]) if(v.y==0 || v.y==1) v], + allgoodx = all(hverts, function(v) any(hverts, function(w) w==[1-v.x, v.y, v.z])), + allgoody = all(vverts, function(v) any(vverts, function(w) w==[v.x, 1-v.y, v.z])) + ) + assert(allgoodx && allgoody, "All VNF tile edge vertices must line up with a vertex on the opposite side of the tile.") + let( + tex2 = vnf_slice(texture, "X", list([1/8:1/8:7/8])), + sorted_tile = _vnf_sort_vertices(tex2, idx=[1,0]), + vertzs = group_sort(sorted_tile[0], idx=1), + row_vnf = vnf_join([ + for (j = [0:1:counts.x-1]) [ + [ + for (group = vertzs) + each [ + for (vert = group) let( + u = floor((j + vert.x) * samples), + uu = ((j + vert.x) * samples) - u, + texh = (vert.z - inset) * tscale, + base = lerp(bases[u], select(bases,u+1), uu), + norm = unit(lerp(norms[u], select(norms,u+1), uu)), + xy = base - norm * texh + ) point3d(xy,vert.y) + ] + ], + sorted_tile[1] + ] + ]), + sorted_row = _vnf_sort_vertices(row_vnf, idx=[1,0]), + rvertzs = group_sort(sorted_row[0], idx=1), + vnf1 = vnf_join([ + for (i = [0:1:counts.y-1]) [ + [ + for (group = rvertzs) let( + v = (i + group[0].z) / counts.y, + mat = move(shift*v) * + scale(lerp([1,1,1],scale,v)) * + zrot(twist*v) * + up(((i/counts.y)-0.5)*h) * + zscale(h/counts.y) + ) each apply(mat, group) + ], + [for (face=sorted_row[1]) reverse(face)] + ] + ]), + tmat = move(shift) * scale(scale) * zrot(twist) * up(h/2), + bpath = _find_vnf_z_edge_path(vnf1,-h/2), + vnf2 = vnf_from_region(bpath, down(h/2), reverse=true), + vnf3 = vnf_from_region(bpath, tmat, reverse=false) + ) vnf_join([vnf1, vnf2, vnf3]) + : let( // Heightfield texture + texcnt = [len(texture[0]), len(texture)], + tile_rows = [ + for (ti = [0:1:texcnt.y-1]) + path3d([ + for (j = [0:1:counts.x]) + for (tj = [0:1:texcnt.x-1]) + if (j != counts.x || tj == 0) + let( + part = (j + (tj/texcnt.x)) * samples, + u = floor(part), + uu = part - u, + texh = (texture[ti][tj] - inset) * tscale, + base = lerp(bases[u], select(bases,u+1), uu), + norm = unit(lerp(norms[u], select(norms,u+1), uu)), + xy = base + norm * texh + ) xy + ]) + ], + tiles = [ + for (i = [0:1:counts.y], ti = [0:1:texcnt.y-1]) + if (i != counts.y || ti == 0) let( - texh = (row[j % texcnt.x] - inset) * tscale, - xy = bases[j] - norms[j] * texh, - xyz = point3d(xy, (i/ycnt-0.5)*h) - ) xyz + v = (i + (ti/texcnt.y)) / counts.y, + mat = down((v-0.5)*h) * + move(shift*v) * + scale(lerp([1,1,1],scale,v)) * + zrot(twist*v) + ) apply(mat, tile_rows[ti]) ] - ) apply(move(shift*u) * scale(lerp([1,1,1],scale,u)) * zrot(twist*u), levpts) - ], - vnf = vnf_vertex_array( - tiles, caps=caps, style=style, reverse=reverse, - col_wrap=col_wrap, row_wrap=false - ), + ) vnf_vertex_array( + tiles, caps=caps, style=style, reverse=reverse, + col_wrap=col_wrap, row_wrap=false + ), cent = centroid(path), anchors = [ named_anchor("centroid_top", point3d(cent, h/2), UP), @@ -2310,6 +2700,19 @@ module textured_linear_sweep( } } +function _find_vnf_z_edge_path(vnf, z) = + let( + verts = vnf[0], + faces = vnf[1], + goods = [for (v = verts) approx(v.z, z)], + fragments = [ + for (face = faces) + for (seg = pair(face, wrap=true)) + if (goods[seg[0]] && goods[seg[1]]) + path2d([verts[seg[0]], verts[seg[1]]]) + ] + ) _assemble_a_path_from_fragments(fragments, rightmost=true)[0]; + // Function&Module: textured_revolution() // Usage: As Function @@ -2322,11 +2725,21 @@ module textured_linear_sweep( // Description: // Given a single 2D path, fully in the X+ half-plane, revolves that path around the Z axis (after rotating its Y+ to Z+). // This creates a solid from that surface of revolution, capped top and bottom, with the sides covered in a given tiled texture. +// If the path to be revolved is clockwise on the XY plane, then the output shape should have its faces pointed outwards, +// though you can use `reverse=true` to reverse the face directions if needed. It is recommended that you preview with +// OpenSCAD's "Thrown Together" view mode, to verify the orientation of the faces. If you see purple, then your model is +// non-manifold, and not 3D print-able. +// The texture can be given in one of three ways: +// - As a texture name string. (See {{get_texture()}} for supported named textures.) +// - As a 2D array of evenly spread height values. (AKA a heightfield.) +// - As a VNF texture tile. A VNF tile exactly defines a surface from `[0,0]` to `[1,1]`, with the Z coordinates +// being the height of the texture point from the surface. VNF tiles MUST be able to tile in both X and Y +// directions with no gaps, with the front and back edges aligned exactly, and the left and right edges as well. // One script to convert a grayscale image to a texture heightfield array in a .scad file can be found at: // https://raw.githubusercontent.com/revarbat/BOSL2/master/scripts/img2scad.py // Arguments: // path = The path to sweep/extrude. -// texture = A texture name string, or a rectangular array of scalar height values (0.0 to 1.0) that define the texture to apply to vertical surfaces. See {{textured_linear_sweep()}} for what textures are supported. +// texture = A texture name string, or a rectangular array of scalar height values (0.0 to 1.0), or a VNF tile that defines the texture to apply to the revolution surface. See {{get_texture()}} for what named textures are supported. // tex_size = An optional 2D target size for the textures. Actual texture sizes will be scaled somewhat to evenly fit the available surface. Default: `[5,5]` // --- // shift = [X,Y] amount to translate the top, relative to the bottom. Default: [0,0] @@ -2334,26 +2747,34 @@ module textured_linear_sweep( // inset = If numeric, lowers the texture into the surface by that amount, before the tscale multiplier is applied. If `true`, insets by exactly `1`. Default: `false` // rot = If true, rotates the texture 90º. // caps = (function only) If true, create endcaps for the extruded shape. Default: `true` -// col_wrap = (function only) If true, the path is considered a closed polygon. Useful mainly for things like making a textured torus. Default: `false` -// style = The triangulation style used. See {{vnf_vertex_array()}} for valid styles. Default: `"min_edge"` +// wrap = (function only) If true, the path is considered a closed polygon. Useful mainly for things like making a textured torus. Default: `false` +// style = The triangulation style used. See {{vnf_vertex_array()}} for valid styles. Used only with heightfield type textures. Default: `"min_edge"` // reverse = If the default faces are facing the wrong way, you can reverse them by setting this to `true`. Default: `false` // counts = If given instead of tex_size, gives the tile repetition counts for textures over the surface length and height. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` -// Texture Values: -// "ribs" = Vertically aligned triangular ribs. -// "trunc_ribs" = Like "ribs" but with flat rib tips. -// "wave_ribs" = Vertically aligned wavy ribs. -// "diamonds" = Diamond shapes with tips aligned with the axes. Useful for knurling. -// "pyramids" = Pyramids shapes with flat sides aligned with the axes. Also useful for knurling. -// "trunc_pyramids" = Like "pyramids" but with flattened tips. -// "dimpled_pyramids" = Like "trunc_pyramids" but with dimples in the flat tips. -// "hills" = Wavy hills and valleys, -// "waves" = A raised sine-wave patten, oriented vertically. -// "dots" = Raised small round bumps. -// "cones" = Raised conical spikes. -// See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield() +// See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield(), get_texture() +// Example: +// path = right(50, p=circle(d=40)); +// textured_revolution(path, "vnf_bricks", tex_size=[10,10], tscale=0.5, wrap=true, caps=false, style="concave"); +// Example: +// tex = [ +// [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], +// [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1], +// [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1], +// [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1], +// [0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1], +// [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1], +// [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1], +// [0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1], +// [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], +// [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], +// [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1], +// [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], +// ]; +// path = arc(cp=[0,0], r=40, start=60, angle=-120); +// textured_revolution(path, tex, tex_size=[20,20], tscale=1, style="concave"); // Example: // include // bezpath = [ @@ -2385,39 +2806,116 @@ function textured_revolution( assert(is_bool(reverse)) assert(counts==undef || is_vector(counts,2)) assert(tex_size==undef || is_vector(tex_size,2)) + assert(is_bool(rot) || in_list(rot,[0,90,180,270])) let( - tex = is_string(texture)? _get_texture(texture) : texture, - texture = rot? transpose(tex) : tex, + tex = is_string(texture)? get_texture(texture) : texture, + texture = !rot? tex : + is_vnf(tex)? zrot(is_num(rot)?rot:90, cp=[1/2,1/2], p=tex) : + rot==180? reverse([for (row=tex) reverse(row)]) : + rot==270? [for (row=transpose(tex)) reverse(row)] : + reverse(transpose(tex)), plen = path_length(path), - maxx = max(column(path,0)), + bounds = pointlist_bounds(path), + maxx = bounds[1].x, + miny = bounds[0].y, + maxy = bounds[1].y, + h = maxy - miny, circumf = 2 * PI * maxx, counts = is_vector(counts,2)? counts : is_vector(tex_size,2) - ? [round(circumf/tex_size.x), round(plen/tex_size.y)] - : [30, 5], - texcnt = [len(texture[0]), len(texture)], + ? [max(1,round(circumf/tex_size.x)), max(1,round(plen/tex_size.y))] + : [ceil(6*circumf/(maxy-miny)), 6], inset = is_num(inset)? inset : inset? 1 : 0, - xcnt = counts.x * texcnt.x, - ycnt = counts.y * texcnt.y, - bases = resample_path(path, n=ycnt+1, closed=false), - norms = path_normals(bases), - tiles = [ - for (i = [0:1:ycnt]) - let(row = texture[i % texcnt.y]) [ - for (j = [0:1:xcnt-1]) - let( - tscale = !wrap && (i==0 || i==ycnt)? 0 : tscale, - texh = tscale * (row[j % texcnt.x] - inset) * (bases[i].x/maxx), - xy = bases[i] - texh * norms[i], - xyz = lerp([0,0,0],point3d(shift),i/ycnt) + rot([90, 0, 360*j/xcnt], p=point3d(xy)) - ) - xyz - ] - ], - vnf = vnf_vertex_array( - tiles, caps=caps, style=style, reverse=reverse, - col_wrap=true, row_wrap=wrap - ) + samples = is_vnf(texture)? 12 : len(texture), + obases = resample_path(path, n=counts.y * samples + (wrap?0:1), closed=wrap), + onorms = path_normals(obases, closed=wrap), + rbases = wrap? close_path(obases) : obases, + rnorms = wrap? close_path(onorms) : onorms, + bases = xrot(90, p=path3d(rbases)), + norms = xrot(90, p=path3d(rnorms)), + vnf = is_vnf(texture) + ? let( // VNF tile texture + tbounds = pointlist_bounds(texture[0]), + min_xy = point2d(tbounds[0]), + max_xy = point2d(tbounds[1]) + ) + assert(min_xy==[0,0] && max_xy==[1,1], "VNF tiles must span exactly from [0,0] to [1,1] in the X and Y components.") + let( + hverts = [for(v = texture[0]) if(v.x==0 || v.x==1) v], + vverts = [for(v = texture[0]) if(v.y==0 || v.y==1) v], + allgoodx = all(hverts, function(v) any(hverts, function(w) w==[1-v.x, v.y, v.z])), + allgoody = all(vverts, function(v) any(vverts, function(w) w==[v.x, 1-v.y, v.z])) + ) + assert(allgoodx && allgoody, "All VNF tile edge vertices must line up with a vertex on the opposite side of the tile.") + let( + tex2 = vnf_slice(vnf_slice(texture, "X", list([1/8:1/8:7/8])), "Y", list([1/8:1/8:7/8])), + sorted_tile = _vnf_sort_vertices(tex2, idx=[0,1]), + vertzs = group_sort(sorted_tile[0], idx=0), + col_vnf = vnf_join([ + for (j = [0:1:counts.y-1]) [ + [ + for (group = vertzs) each [ + for (vert = group) let( + part = (j + vert.y) * samples, + u = floor(part), + uu = part - u, + tscale = + wrap? tscale : + caps && j==0 && approx(vert.y,0)? 0 : + caps && j==counts.y-1 && approx(vert.y,1)? 0 : + tscale, + base = lerp(select(bases,u), select(bases,u+1), uu), + norm = unit(lerp(select(norms,u), select(norms,u+1), uu)), + texh = (vert.z - inset) * tscale * (base.x / maxx), + xyz = base - norm * texh + ) zrot(vert.x*360/counts.x, p=xyz) + ] + ], + sorted_tile[1] + ] + ]), + vnf1 = vnf_join([ + for (i = [0:1:counts.x-1]) + zrot(i*360/counts.x, col_vnf) + ]), + skmat = down(-miny) * skew(sxz=shift.x/h, syz=shift.y/h) * up(-miny), + vnf_out = wrap? apply(skmat,vnf1) : + let( + bpath = _find_vnf_z_edge_path(vnf1,-h/2), + vnf2 = vnf_from_region(bpath, down(h/2), reverse=true), + vnf3 = vnf_from_region(bpath, up(h/2), reverse=false) + ) apply(skmat, vnf_join([vnf1, vnf2, vnf3])) + ) vnf_out + : let( // Heightfield texture + texcnt = [len(texture[0]), len(texture)], + skmat = down(-miny) * skew(sxz=shift.x/h, syz=shift.y/h) * up(-miny), + tiles = transpose([ + for (j = [0:1:counts.x-1], tj = [0:1:texcnt.x-1]) let( + v = (j + (tj/texcnt.x)) / counts.x, + mat = skmat * zrot(v*360) + ) apply(mat, [ + for (i = [0:1:counts.y-(wrap?1:0)], ti = [0:1:texcnt.y-1]) + if (i != counts.y || ti == 0) + let( + part = (i + (ti/texcnt.y)) * samples, + u = floor(part), + uu = part - u, + tscale = + wrap? tscale : + caps && i==0 && ti==0? 0 : + caps && i==counts.y && ti==0? 0 : + tscale, + base = lerp(bases[u], select(bases,u+1), uu), + norm = unit(lerp(norms[u], select(norms,u+1), uu)), + texh = (texture[ti][tj] - inset) * tscale * (base.x / maxx), + xyz = base - norm * texh + ) xyz + ]) + ]) + ) vnf_vertex_array( + tiles, caps=caps, style=style, reverse=reverse, + col_wrap=true, row_wrap=wrap + ) ) vnf; @@ -2458,12 +2956,18 @@ module textured_revolution( // Topics: Sweep, Extrusion, Textures, Knurling // Description: // Creates a cylinder or cone with optional chamfers or roundings, covered in a textured surface. +// The texture can be given in one of three ways: +// - As a texture name string. (See {{get_texture()}} for supported named textures.) +// - As a 2D array of evenly spread height values. (AKA a heightfield.) +// - As a VNF texture tile. A VNF tile exactly defines a surface from `[0,0]` to `[1,1]`, with the Z coordinates +// being the height of the texture point from the surface. VNF tiles MUST be able to tile in both X and Y +// directions with no gaps, with the front and back edges aligned exactly, and the left and right edges as well. // One script to convert a grayscale image to a texture heightfield array in a .scad file can be found at: // https://raw.githubusercontent.com/revarbat/BOSL2/master/scripts/img2scad.py // Arguments: // h | l = The height of the cylinder. // r = The radius of the cylinder. -// texture = A texture name string, or a rectangular array of scalar height values (0.0 to 1.0) that define the texture to apply to vertical surfaces. See {{textured_linear_sweep()}} for supported textures. +// texture = A texture name string, or a rectangular array of scalar height values (0.0 to 1.0), or a VNF tile that defines the texture to apply to the cylinder wall surfaces. See {{get_texture()}} for what named textures are supported. // tex_size = An optional 2D target size for the textures. Actual texture sizes will be scaled somewhat to evenly fit the available surface. Default: `[5,5]` // --- // r1 = The radius of the bottom of the cylinder. @@ -2479,33 +2983,22 @@ module textured_revolution( // style = The triangulation style used. See {{vnf_vertex_array()}} for valid styles. Default: `"min_edge"` // reverse = If the default faces are facing the wrong way, you can reverse them by setting this to `true`. Default: `false` // counts = If given instead of tex_size, gives the tile repetition counts for textures over the surface length and height. -// chamfer = If given, chamfers the top and bottom of the cylinder by the given size. -// chamfer1 = If given, chamfers the bottom of the cylinder by the given size. -// chamfer2 = If given, chamfers the top of the cylinder by the given size. -// rounding = If given, rounds the top and bottom of the cylinder to the given radius. -// rounding1 = If given, rounds the bottom of the cylinder to the given radius. -// rounding2 = If given, rounds the top of the cylinder to the given radius. +// chamfer = If given, chamfers the top and bottom of the cylinder by the given size. If given a negative size, creates a chamfer that juts *outward* from the cylinder. +// chamfer1 = If given, chamfers the bottom of the cylinder by the given size. If given a negative size, creates a chamfer that juts *outward* from the cylinder. +// chamfer2 = If given, chamfers the top of the cylinder by the given size. If given a negative size, creates a chamfer that juts *outward* from the cylinder. +// rounding = If given, rounds the top and bottom of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder. +// rounding1 = If given, rounds the bottom of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder. +// rounding2 = If given, rounds the top of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` -// Texture Values: -// "ribs" = Vertically aligned triangular ribs. -// "trunc_ribs" = Like "ribs" but with flat rib tips. -// "wave_ribs" = Vertically aligned wavy ribs. -// "diamonds" = Diamond shapes with tips aligned with the axes. Useful for knurling. -// "pyramids" = Pyramids shapes with flat sides aligned with the axes. Also useful for knurling. -// "trunc_pyramids" = Like "pyramids" but with flattened tips. -// "dimpled_pyramids" = Like "trunc_pyramids" but with dimples in the flat tips. -// "hills" = Wavy hills and valleys, -// "waves" = A raised sine-wave patten, oriented vertically. -// "dots" = Raised small round bumps. -// "cones" = Raised conical spikes. -// See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield() +// See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield(), get_texture() // Examples: // textured_cylinder(h=40, r=20, texture="diamonds", tex_size=[5,5]); // textured_cylinder(h=40, r1=20, r2=15, texture="pyramids", tex_size=[5,5], style="convex"); // textured_cylinder(h=40, r1=20, r2=15, texture="trunc_pyramids", tex_size=[5,5], chamfer=5, style="convex"); -// textured_cylinder(h=40, r1=20, r2=15, texture="dots", tex_size=[5,5], rounding=8, style="convex"); +// textured_cylinder(h=40, r1=20, r2=15, texture="vnf_dots", tex_size=[5,5], rounding=8); +// textured_cylinder(h=50, r1=25, r2=20, shift=[0,10], texture="bricks", rounding1=-10, tex_size=[10,10], tscale=0.5, style="concave"); function textured_cylinder( h, r, texture, tex_size=[1,1], counts, tscale=1, inset=false, rot=false, @@ -2523,13 +3016,20 @@ function textured_cylinder( chamf2 = first_defined([chamfer2, chamfer]), round1 = first_defined([rounding1, rounding]), round2 = first_defined([rounding2, rounding]), + needed_h = default(chamf1,0) + default(chamf2,0) + + default(round1,0) + default(round2,0), + check = assert(needed_h<=h), path = [ - if (is_finite(chamf1)) each arc(n=2, r=chamf1, corner=[[0,-h/2],[r1,-h/2],[r2,h/2]]) - else if (is_finite(round1)) each arc(r=round1, corner=[[0,-h/2],[r1,-h/2],[r2,h/2]]) - else [r1,-h/2], - if (is_finite(chamf2)) each arc(n=2, r=chamf2, corner=[[r1,-h/2],[r2,h/2],[0,h/2]]) - else if (is_finite(round2)) each arc(r=round2, corner=[[r1,-h/2],[r2,h/2],[0,h/2]]) - else [r2,h/2], + if (is_finite(chamf1) && !approx(chamf1,0)) + each arc(n=2, r=abs(chamf1), corner=[[(chamf1>0?0:1e6),-h/2],[r1,-h/2],[r2,h/2]]) + else if (is_finite(round1) && !approx(round1,0)) + each arc(r=abs(round1), corner=[[(round1>0?0:1e6),-h/2],[r1,-h/2],[r2,h/2]]) + else [r1,-h/2], + if (is_finite(chamf2) && !approx(chamf2,0)) + each arc(n=2, r=abs(chamf2), corner=[[r1,-h/2],[r2,h/2],[(chamf2>0?0:1e6),h/2]]) + else if (is_finite(round2) && !approx(round2,0)) + each arc(r=abs(round2), corner=[[r1,-h/2],[r2,h/2],[(round2>0?0:1e6),h/2]]) + else [r2,h/2], ], vnf = textured_revolution( reverse(path), texture, diff --git a/vnf.scad b/vnf.scad index 40dad47..a202835 100644 --- a/vnf.scad +++ b/vnf.scad @@ -733,6 +733,20 @@ function vnf_triangulate(vnf) = +function _vnf_sort_vertices(vnf, idx=[2,1,0]) = + let( + verts = vnf[0], + faces = vnf[1], + vidx = sortidx(verts, idx=idx), + rvidx = sortidx(vidx), + sorted_vnf = [ + [ for (i = vidx) verts[i] ], + [ for (face = faces) [ for (i = face) rvidx[i] ] ], + ] + ) sorted_vnf; + + + // Function: vnf_slice() // Usage: // sliced = vnf_slice(vnf, dir, cuts);