mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Expand top text, and reorder some modules for docs
This commit is contained in:
parent
1763c51a35
commit
c8a1e14f05
1 changed files with 143 additions and 133 deletions
276
shapes2d.scad
276
shapes2d.scad
|
@ -1,11 +1,21 @@
|
|||
//////////////////////////////////////////////////////////////////////
|
||||
// LibFile: shapes2d.scad
|
||||
// Common useful 2D shapes.
|
||||
// This file includes stroke(), which converts a path
|
||||
// into a geometric object, like drawing with a pen. You
|
||||
// can make a dashed line or add arrow heads. The turtle() function
|
||||
// provides a turtle graphics style approach for producing paths.
|
||||
// You can create regular polygons with optional rounded corners and
|
||||
// alignment features not available with circle(). The file also
|
||||
// provides teardrop2d, which is useful for 3d printable holes.
|
||||
// Lastly you can use the masks to produce edge treatments common in
|
||||
// furniture from the simple roundover or cove molding to the more
|
||||
// elaborate ogee. Many of the commands have module forms that
|
||||
// produce geometry and function forms that produce a path.
|
||||
// Includes:
|
||||
// include <BOSL2/std.scad>
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Section: 2D Drawing Helpers
|
||||
// Section: Line Drawing
|
||||
|
||||
// Module: stroke()
|
||||
// Usage:
|
||||
|
@ -1055,8 +1065,7 @@ function oval(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
|
|||
) reorient(anchor,spin, two_d=true, r=[rx,ry], p=pts);
|
||||
|
||||
|
||||
|
||||
// Section: 2D N-Gons
|
||||
// Section: Polygons
|
||||
|
||||
// Function&Module: regular_ngon()
|
||||
// Usage:
|
||||
|
@ -1377,10 +1386,6 @@ module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip,
|
|||
regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children();
|
||||
|
||||
|
||||
|
||||
// Section: Other 2D Shapes
|
||||
|
||||
|
||||
// Function&Module: trapezoid()
|
||||
// Usage: As Module
|
||||
// trapezoid(h, w1, w2, [shift=], [rounding=], [chamfer=], ...);
|
||||
|
@ -1486,6 +1491,136 @@ module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Function&Module: star()
|
||||
// Usage: As Module
|
||||
// star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...);
|
||||
// star(n, r/or, step=, ...);
|
||||
// Usage: With Attachments
|
||||
// star(n, r/or, ir, ...) { attachments }
|
||||
// Usage: As Function
|
||||
// path = star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...);
|
||||
// path = star(n, r/or, step=, ...);
|
||||
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
|
||||
// See Also: circle(), oval()
|
||||
// Description:
|
||||
// When called as a function, returns the path needed to create a star polygon with N points.
|
||||
// When called as a module, creates a star polygon with N points.
|
||||
// Arguments:
|
||||
// n = The number of stellate tips on the star.
|
||||
// r/or = The radius to the tips of the star.
|
||||
// ir = The radius to the inner corners of the star.
|
||||
// ---
|
||||
// d/od = The diameter to the tips of the star.
|
||||
// id = The diameter to the inner corners of the star.
|
||||
// step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2
|
||||
// realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false
|
||||
// align_tip = If given as a 2D vector, rotates the whole shape so that the first star tip points in that direction. This occurs before spin.
|
||||
// align_pit = If given as a 2D vector, rotates the whole shape so that the first inner corner is pointed towards that direction. This occurs before spin.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Extra Anchors:
|
||||
// "tip0" ... "tip4" = Each tip has an anchor, pointing outwards.
|
||||
// "pit0" ... "pit4" = The inside corner between each tip has an anchor, pointing outwards.
|
||||
// "midpt0" ... "midpt4" = The center-point between each pair of tips has an anchor, pointing outwards.
|
||||
// Examples(2D):
|
||||
// star(n=5, r=50, ir=25);
|
||||
// star(n=5, r=50, step=2);
|
||||
// star(n=7, r=50, step=2);
|
||||
// star(n=7, r=50, step=3);
|
||||
// Example(2D): Realigned
|
||||
// star(n=7, r=50, step=3, realign=true);
|
||||
// Example(2D): Alignment by Tip
|
||||
// star(n=5, ir=15, or=30, align_tip=BACK+RIGHT)
|
||||
// attach("tip0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Alignment by Pit
|
||||
// star(n=5, ir=15, or=30, align_pit=BACK+RIGHT)
|
||||
// attach("pit0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Called as Function
|
||||
// stroke(closed=true, star(n=5, r=50, ir=25));
|
||||
function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, _mat, _anchs) =
|
||||
assert(is_undef(align_tip) || is_vector(align_tip))
|
||||
assert(is_undef(align_pit) || is_vector(align_pit))
|
||||
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit")
|
||||
let(
|
||||
r = get_radius(r1=or, d1=od, r=r, d=d),
|
||||
count = num_defined([ir,id,step]),
|
||||
stepOK = is_undef(step) || (step>1 && step<n/2)
|
||||
)
|
||||
assert(is_def(n), "Must specify number of points, n")
|
||||
assert(count==1, "Must specify exactly one of ir, id, step")
|
||||
assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2)," for ",n," point star"))
|
||||
let(
|
||||
mat = !is_undef(_mat) ? _mat :
|
||||
( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
||||
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
||||
!is_undef(align_pit)? rot(from=RIGHT, to=point2d(align_pit), planar=true) * rot(180/n, planar=true) :
|
||||
affine2d_identity()
|
||||
),
|
||||
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n),
|
||||
ir = get_radius(r=ir, d=id, dflt=stepr),
|
||||
offset = realign? 180/n : 0,
|
||||
path1 = [for(i=[2*n:-1:1]) let(theta=180*i/n, radius=(i%2)?ir:r) radius*[cos(theta), sin(theta)]],
|
||||
path = apply(mat, path1),
|
||||
anchors = !is_undef(_anchs) ? _anchs :
|
||||
!is_string(anchor)? [] : [
|
||||
for (i = [0:1:n-1]) let(
|
||||
a1 = 360 - i*360/n,
|
||||
a2 = a1 - 180/n,
|
||||
a3 = a1 - 360/n,
|
||||
p1 = apply(mat, polar_to_xy(r,a1)),
|
||||
p2 = apply(mat, polar_to_xy(ir,a2)),
|
||||
p3 = apply(mat, polar_to_xy(r,a3)),
|
||||
pos = (p1+p3)/2
|
||||
) each [
|
||||
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
|
||||
anchorpt(str("pit",i), p2, unit(p2,BACK), 0),
|
||||
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
|
||||
]
|
||||
]
|
||||
) reorient(anchor,spin, two_d=true, path=path, p=path, anchors=anchors);
|
||||
|
||||
|
||||
module star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0) {
|
||||
assert(is_undef(align_tip) || is_vector(align_tip));
|
||||
assert(is_undef(align_pit) || is_vector(align_pit));
|
||||
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit");
|
||||
r = get_radius(r1=or, d1=od, r=r, d=d, dflt=undef);
|
||||
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n);
|
||||
ir = get_radius(r=ir, d=id, dflt=stepr);
|
||||
mat = ( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
||||
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
||||
!is_undef(align_pit)? rot(from=RIGHT, to=point2d(align_pit), planar=true) * rot(180/n, planar=true) :
|
||||
affine2d_identity()
|
||||
);
|
||||
anchors = [
|
||||
for (i = [0:1:n-1]) let(
|
||||
a1 = 360 - i*360/n - (realign? 180/n : 0),
|
||||
a2 = a1 - 180/n,
|
||||
a3 = a1 - 360/n,
|
||||
p1 = apply(mat, polar_to_xy(r,a1)),
|
||||
p2 = apply(mat, polar_to_xy(ir,a2)),
|
||||
p3 = apply(mat, polar_to_xy(r,a3)),
|
||||
pos = (p1+p3)/2
|
||||
) each [
|
||||
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
|
||||
anchorpt(str("pit",i), p2, unit(p2,BACK), 0),
|
||||
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
|
||||
]
|
||||
];
|
||||
path = star(n=n, r=r, ir=ir, realign=realign, _mat=mat, _anchs=anchors);
|
||||
attachable(anchor,spin, two_d=true, path=path, anchors=anchors) {
|
||||
polygon(path);
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Section: Curved 2D Shapes
|
||||
|
||||
|
||||
// Function&Module: teardrop2d()
|
||||
//
|
||||
// Description:
|
||||
|
@ -1616,131 +1751,6 @@ module glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) {
|
|||
}
|
||||
|
||||
|
||||
// Function&Module: star()
|
||||
// Usage: As Module
|
||||
// star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...);
|
||||
// star(n, r/or, step=, ...);
|
||||
// Usage: With Attachments
|
||||
// star(n, r/or, ir, ...) { attachments }
|
||||
// Usage: As Function
|
||||
// path = star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...);
|
||||
// path = star(n, r/or, step=, ...);
|
||||
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
|
||||
// See Also: circle(), oval()
|
||||
// Description:
|
||||
// When called as a function, returns the path needed to create a star polygon with N points.
|
||||
// When called as a module, creates a star polygon with N points.
|
||||
// Arguments:
|
||||
// n = The number of stellate tips on the star.
|
||||
// r/or = The radius to the tips of the star.
|
||||
// ir = The radius to the inner corners of the star.
|
||||
// ---
|
||||
// d/od = The diameter to the tips of the star.
|
||||
// id = The diameter to the inner corners of the star.
|
||||
// step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2
|
||||
// realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false
|
||||
// align_tip = If given as a 2D vector, rotates the whole shape so that the first star tip points in that direction. This occurs before spin.
|
||||
// align_pit = If given as a 2D vector, rotates the whole shape so that the first inner corner is pointed towards that direction. This occurs before spin.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Extra Anchors:
|
||||
// "tip0" ... "tip4" = Each tip has an anchor, pointing outwards.
|
||||
// "pit0" ... "pit4" = The inside corner between each tip has an anchor, pointing outwards.
|
||||
// "midpt0" ... "midpt4" = The center-point between each pair of tips has an anchor, pointing outwards.
|
||||
// Examples(2D):
|
||||
// star(n=5, r=50, ir=25);
|
||||
// star(n=5, r=50, step=2);
|
||||
// star(n=7, r=50, step=2);
|
||||
// star(n=7, r=50, step=3);
|
||||
// Example(2D): Realigned
|
||||
// star(n=7, r=50, step=3, realign=true);
|
||||
// Example(2D): Alignment by Tip
|
||||
// star(n=5, ir=15, or=30, align_tip=BACK+RIGHT)
|
||||
// attach("tip0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Alignment by Pit
|
||||
// star(n=5, ir=15, or=30, align_pit=BACK+RIGHT)
|
||||
// attach("pit0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Called as Function
|
||||
// stroke(closed=true, star(n=5, r=50, ir=25));
|
||||
function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, _mat, _anchs) =
|
||||
assert(is_undef(align_tip) || is_vector(align_tip))
|
||||
assert(is_undef(align_pit) || is_vector(align_pit))
|
||||
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit")
|
||||
let(
|
||||
r = get_radius(r1=or, d1=od, r=r, d=d),
|
||||
count = num_defined([ir,id,step]),
|
||||
stepOK = is_undef(step) || (step>1 && step<n/2)
|
||||
)
|
||||
assert(is_def(n), "Must specify number of points, n")
|
||||
assert(count==1, "Must specify exactly one of ir, id, step")
|
||||
assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2)," for ",n," point star"))
|
||||
let(
|
||||
mat = !is_undef(_mat) ? _mat :
|
||||
( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
||||
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
||||
!is_undef(align_pit)? rot(from=RIGHT, to=point2d(align_pit), planar=true) * rot(180/n, planar=true) :
|
||||
affine2d_identity()
|
||||
),
|
||||
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n),
|
||||
ir = get_radius(r=ir, d=id, dflt=stepr),
|
||||
offset = realign? 180/n : 0,
|
||||
path1 = [for(i=[2*n:-1:1]) let(theta=180*i/n, radius=(i%2)?ir:r) radius*[cos(theta), sin(theta)]],
|
||||
path = apply(mat, path1),
|
||||
anchors = !is_undef(_anchs) ? _anchs :
|
||||
!is_string(anchor)? [] : [
|
||||
for (i = [0:1:n-1]) let(
|
||||
a1 = 360 - i*360/n,
|
||||
a2 = a1 - 180/n,
|
||||
a3 = a1 - 360/n,
|
||||
p1 = apply(mat, polar_to_xy(r,a1)),
|
||||
p2 = apply(mat, polar_to_xy(ir,a2)),
|
||||
p3 = apply(mat, polar_to_xy(r,a3)),
|
||||
pos = (p1+p3)/2
|
||||
) each [
|
||||
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
|
||||
anchorpt(str("pit",i), p2, unit(p2,BACK), 0),
|
||||
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
|
||||
]
|
||||
]
|
||||
) reorient(anchor,spin, two_d=true, path=path, p=path, anchors=anchors);
|
||||
|
||||
|
||||
module star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0) {
|
||||
assert(is_undef(align_tip) || is_vector(align_tip));
|
||||
assert(is_undef(align_pit) || is_vector(align_pit));
|
||||
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit");
|
||||
r = get_radius(r1=or, d1=od, r=r, d=d, dflt=undef);
|
||||
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n);
|
||||
ir = get_radius(r=ir, d=id, dflt=stepr);
|
||||
mat = ( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
||||
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
||||
!is_undef(align_pit)? rot(from=RIGHT, to=point2d(align_pit), planar=true) * rot(180/n, planar=true) :
|
||||
affine2d_identity()
|
||||
);
|
||||
anchors = [
|
||||
for (i = [0:1:n-1]) let(
|
||||
a1 = 360 - i*360/n - (realign? 180/n : 0),
|
||||
a2 = a1 - 180/n,
|
||||
a3 = a1 - 360/n,
|
||||
p1 = apply(mat, polar_to_xy(r,a1)),
|
||||
p2 = apply(mat, polar_to_xy(ir,a2)),
|
||||
p3 = apply(mat, polar_to_xy(r,a3)),
|
||||
pos = (p1+p3)/2
|
||||
) each [
|
||||
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
|
||||
anchorpt(str("pit",i), p2, unit(p2,BACK), 0),
|
||||
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
|
||||
]
|
||||
];
|
||||
path = star(n=n, r=r, ir=ir, realign=realign, _mat=mat, _anchs=anchors);
|
||||
attachable(anchor,spin, two_d=true, path=path, anchors=anchors) {
|
||||
polygon(path);
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
|
||||
pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1);
|
||||
|
|
Loading…
Reference in a new issue