doc tweaks

fix interface to bezier_curve()
This commit is contained in:
Adrian Mariano 2022-01-09 09:55:26 -05:00
parent b41b90bc2a
commit c93f2041dc
2 changed files with 34 additions and 30 deletions

View file

@ -40,7 +40,7 @@
// is best when `u` is a long list and the bezier degree is 10 or less. The degree of the bezier // is best when `u` is a long list and the bezier degree is 10 or less. The degree of the bezier
// curve is `len(bezier)-1`. // curve is `len(bezier)-1`.
// Arguments: // Arguments:
// bezier = The list of endpoints and control points for this bezier segment. // bezier = The list of endpoints and control points for this bezier curve.
// u = Parameter values for evaluating the curve, given as a single value, a list or a range. // u = Parameter values for evaluating the curve, given as a single value, a list or a range.
// Example(2D): Quadratic (Degree 2) Bezier. // Example(2D): Quadratic (Degree 2) Bezier.
// bez = [[0,0], [30,30], [80,0]]; // bez = [[0,0], [30,30], [80,0]];
@ -177,20 +177,21 @@ function _bezier_matrix(N) =
// Function: bezier_curve() // Function: bezier_curve()
// Usage: // Usage:
// path = bezier_curve(bezier, n, [endpoint]); // path = bezier_curve(bezier, [splinesteps], [endpoint]);
// Topics: Bezier Curves // Topics: Bezier Curves
// See Also: bezier_curvature(), bezier_tangent(), bezier_derivative(), bezier_points() // See Also: bezier_curvature(), bezier_tangent(), bezier_derivative(), bezier_points()
// Description: // Description:
// Takes a list of bezier control points and generates n points along the bezier curve they define. // Takes a list of bezier control points and generates splinesteps segments (splinesteps+1 points)
// along the bezier curve they define.
// Points start at the first control point and are sampled uniformly along the bezier parameter. // Points start at the first control point and are sampled uniformly along the bezier parameter.
// The endpoints of the output will be *exactly* equal to the first and last bezier control points // The endpoints of the output will be *exactly* equal to the first and last bezier control points
// when endpoint is true. If endpoint is false the sampling stops one step before the final point // when endpoint is true. If endpoint is false the sampling stops one step before the final point
// of the bezier curve, but you still get n, more tightly spaced, points. // of the bezier curve, but you still get the same number of (more tightly spaced) points.
// The distance between the points will *not* be equidistant. // The distance between the points will *not* be equidistant.
// The degree of the bezier curve is one less than the number of points in `curve`. // The degree of the bezier curve is one less than the number of points in `curve`.
// Arguments: // Arguments:
// bezier = The list of control points that define the Bezier curve. // bezier = The list of control points that define the Bezier curve.
// n = The number of points to generate along the bezier curve. // splinesteps = The number of segments to create on the bezier curve. Default: 16
// endpoint = if false then exclude the endpoint. Default: True // endpoint = if false then exclude the endpoint. Default: True
// Example(2D): Quadratic (Degree 2) Bezier. // Example(2D): Quadratic (Degree 2) Bezier.
// bez = [[0,0], [30,30], [80,0]]; // bez = [[0,0], [30,30], [80,0]];
@ -204,8 +205,8 @@ function _bezier_matrix(N) =
// bez = [[0,0], [5,15], [40,20], [60,-15], [80,0]]; // bez = [[0,0], [5,15], [40,20], [60,-15], [80,0]];
// move_copies(bezier_curve(bez, 8)) sphere(r=1.5, $fn=12); // move_copies(bezier_curve(bez, 8)) sphere(r=1.5, $fn=12);
// debug_bezier(bez, N=len(bez)-1); // debug_bezier(bez, N=len(bez)-1);
function bezier_curve(bezier,n,endpoint=true) = function bezier_curve(bezier,splinesteps=16,endpoint=true) =
bezier_points(bezier, lerpn(0,1,n,endpoint)); bezier_points(bezier, lerpn(0,1,splinesteps+1,endpoint));
// Function: bezier_derivative() // Function: bezier_derivative()
@ -288,9 +289,9 @@ function bezier_curvature(bezier, u) =
// Topics: Bezier Curves // Topics: Bezier Curves
// See Also: bezier_points() // See Also: bezier_points()
// Description: // Description:
// Finds the closest part of the given bezier segment to point `pt`. // Finds the closest part of the given bezier curve to point `pt`.
// The degree of the curve, N, is one less than the number of points in `curve`. // The degree of the curve, N, is one less than the number of points in `curve`.
// Returns `u` for the shortest position on the bezier segment to the given point `pt`. // Returns `u` for the closest position on the bezier curve to the given point `pt`.
// Arguments: // Arguments:
// bezier = The list of control points that define the Bezier curve. // bezier = The list of control points that define the Bezier curve.
// pt = The point to find the closest curve point to. // pt = The point to find the closest curve point to.
@ -401,22 +402,25 @@ function bezier_line_intersection(bezier, line) =
// Bezier curve control point set is `[p0,p1,p2,p3]` and the second one is `[p3,p4,p5,p6]`. The endpoint, `p3`, is shared between the control point sets. // Bezier curve control point set is `[p0,p1,p2,p3]` and the second one is `[p3,p4,p5,p6]`. The endpoint, `p3`, is shared between the control point sets.
// The Bezier degree, which must be known to interpret the Bezier path, defaults to 3. // The Bezier degree, which must be known to interpret the Bezier path, defaults to 3.
// Function: bezpath_points() // Function: bezpath_points()
// Usage: // Usage:
// pt = bezpath_points(bezpath, seg, u, [N]); // pt = bezpath_points(bezpath, curveind, u, [N]);
// ptlist = bezpath_points(bezpath, seg, LIST, [N]); // ptlist = bezpath_points(bezpath, curveind, LIST, [N]);
// path = bezpath_path_points(bezpath, seg, RANGE, [N]); // path = bezpath_points(bezpath, curveind, RANGE, [N]);
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bezier_points(), bezier_curve() // See Also: bezier_points(), bezier_curve()
// Description: // Description:
// Returns the coordinates of Bezier path path segment `seg` at parameter `u`. // Extracts from the Bezier path `bezpath` the control points for the Bezier curve whose index is `curveind` and
// computes the point or points on the corresponding Bezier curve specified by `u`. If `curveind` is zero you
// get the first curve. The number of curves is `(len(bezpath)-1)/N` so the maximum index is that number minus one.
// Arguments: // Arguments:
// path = A Bezier path path to approximate. // bezpath = A Bezier path path to approximate.
// seg = Segment number along the path. Each segment is N points long. // curveind = Curve number along the path.
// u = Parameter values for evaluating the curve, given as a single value, a list or a range. // u = Parameter values for evaluating the curve, given as a single value, a list or a range.
// N = The degree of the Bezier path curves. Cubic Bezier paths have N=3. Default: 3 // N = The degree of the Bezier path curves. Default: 3
function bezpath_points(bezpath, seg, u, N=3) = function bezpath_points(bezpath, curveind, u, N=3) =
bezier_points(select(bezpath,seg*N,(seg+1)*N), u); bezier_points(select(bezpath,curveind*N,(curveind+1)*N), u);
// Function: bezpath_curve() // Function: bezpath_curve()
@ -428,7 +432,7 @@ function bezpath_points(bezpath, seg, u, N=3) =
// Takes a bezier path and converts it into a path of points. // Takes a bezier path and converts it into a path of points.
// Arguments: // Arguments:
// bezpath = A bezier path to approximate. // bezpath = A bezier path to approximate.
// splinesteps = Number of straight lines to split each bezier segment into. default=16 // splinesteps = Number of straight lines to split each bezier curve into. default=16
// N = The degree of the bezier curves. Cubic beziers have N=3. Default: 3 // N = The degree of the bezier curves. Cubic beziers have N=3. Default: 3
// endpoint = If true, include the very last point of the bezier path. Default: true // endpoint = If true, include the very last point of the bezier path. Default: true
// Example(2D): // Example(2D):
@ -975,16 +979,15 @@ function _bezier_rectangle(patch, splinesteps=16, style="default") =
// Topics: Bezier Patches // Topics: Bezier Patches
// See Also: bezier_patch_points(), bezier_patch_flat() // See Also: bezier_patch_points(), bezier_patch_flat()
// Description: // Description:
// Calculate vertices and faces for forming a (possibly partial) polyhedron from the given // Convert a patch or list of patches into the corresponding Bezier surface, representing the
// bezier patch or list of patches. Returns a [VNF structure](vnf.scad): a list // result as a [VNF structure](vnf.scad). The `splinesteps` argument specifies the sampling grid of
// containing two elements. The first is the the list of vertices. The second is the list // the surface for each patch by specifying the number of segments on the borders of the surface.
// of faces, where each face is a list of indices into the list of vertices. The splinesteps argument specifies // It can be a scalar, which gives a uniform grid, or
// the number of segments on the borders of the patch or patches. It can be a scalar or // it can be [USTEPS, VSTEPS], which gives difference spacing in the U and V parameters.
// it can be [XSTEPS, YSTEPS]. Note that the surface you produce maybe // Note that the surface you produce may be disconnected and is not necessarily a valid manifold in OpenSCAD.
// disconnected and is not necessarily a valid polyhedron.
// Arguments: // Arguments:
// patches = The bezier patch or list of bezier patches to convert into a surface. // patches = The bezier patch or list of bezier patches to convert into a vnf.
// splinesteps = Number of steps to divide each bezier segment into. For rectangular patches you can specify [XSTEPS,YSTEPS]. Default: 16 // splinesteps = Number of segments on the border of the bezier surface. You can specify [USTEPS,VSTEPS]. Default: 16
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", "min_edge", "quincunx", "convex" and "concave". See {{vnf_vertex_array()}}. Default: "default" // style = The style of subdividing the quads into faces. Valid options are "default", "alt", "min_edge", "quincunx", "convex" and "concave". See {{vnf_vertex_array()}}. Default: "default"
// Example(3D): // Example(3D):
// patch = [ // patch = [
@ -1343,7 +1346,7 @@ module debug_bezier(bezpath, width=1, N=3) {
// Arguments: // Arguments:
// patches = A list of rectangular bezier patches. // patches = A list of rectangular bezier patches.
// --- // ---
// splinesteps = Number of steps to divide each bezier segment into. default=16 // splinesteps = Number of segments to divide each bezier curve into. Default: 16
// showcps = If true, show the controlpoints as well as the surface. Default: true. // showcps = If true, show the controlpoints as well as the surface. Default: true.
// showdots = If true, shows the calculated surface vertices. Default: false. // showdots = If true, shows the calculated surface vertices. Default: false.
// showpatch = If true, shows the surface faces. Default: true. // showpatch = If true, shows the surface faces. Default: true.
@ -1384,6 +1387,7 @@ module debug_bezier_patches(patches=[], size, splinesteps=16, showcps=true, show
if (i<len(patch)-1) extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size); if (i<len(patch)-1) extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
if (j<len(patch[i])-1) extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size); if (j<len(patch[i])-1) extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
} }
}
if (showpatch || showdots){ if (showpatch || showdots){
vnf = bezier_vnf(patch, splinesteps=splinesteps, style=style); vnf = bezier_vnf(patch, splinesteps=splinesteps, style=style);
if (showpatch) vnf_polyhedron(vnf, convexity=convexity); if (showpatch) vnf_polyhedron(vnf, convexity=convexity);

View file

@ -347,7 +347,7 @@ function _bezcorner(points, parm) =
] : _smooth_bez_fill(points,parm), ] : _smooth_bez_fill(points,parm),
N = max(3,$fn>0 ?$fn : ceil(bezier_length(P)/$fs)) N = max(3,$fn>0 ?$fn : ceil(bezier_length(P)/$fs))
) )
bezier_curve(P,N+1,endpoint=true); bezier_curve(P,N,endpoint=true);
function _chamfcorner(points, parm) = function _chamfcorner(points, parm) =
let( let(