Merge remote-tracking branch 'upstream/master'

This commit is contained in:
Adrian Mariano 2021-10-20 23:39:52 -04:00
commit c98dc64d20
5 changed files with 339 additions and 305 deletions

View file

@ -48,7 +48,7 @@ function map(func, list) =
// Topics: Function Literals, Looping, Filters
// Usage:
// lst = filter(func, list);
// lst = filter(function (x) x+1, list);
// lst = filter(function (x) x>1, list);
// Description:
// Returns all items in `list` that the function `func` returns true for.
// In pseudo-code, this is effectively:
@ -235,35 +235,72 @@ function for_n(n,init,func) =
a(init, n[0]);
// Function: find_all()
// Topics: Function Literals, Looping, Filters
// Usage:
// indices = find_all(func, list);
// indices = find_all(function (x) x>1, list);
// Description:
// Returns the indices of all items in `list` that the function `func` returns true for.
// In pseudo-code, this is effectively:
// ```
// function find_all(func,list):
// out = [];
// foreach item in list:
// if func(item) is true:
// append item index to out;
// return out;
// ```
// Arguments:
// func = The function of signature `function (x)` to evaluate for each item in `list`.
// list = The input list.
// See Also: find_all(), map(), reduce(), accumulate(), while(), for_n()
// Example:
// func = function(x) x>5;
// echo(find_all(func, [3,4,5,6,7]));
// // ECHO: [3,4]
function find_all(func, list) =
assert(is_function(func))
assert(is_list(list))
[for (indexnum=idx(list)) if (func(list[indexnum])) indexnum];
// Function: find_first()
// Topics: Function Literals, Searching
// Usage:
// idx = find_first(val, list, [start=], [func=]);
// idx = find_first(func, list, [start=]);
// Description:
// Finds the first item in `list` which, when compared against `val` using the function literal
// `func` gets a true result. By default, `func` just calls `approx()`. The signature of the
// function literal in `func` is `function (val,x)`, and it is expected to return true when the
// two values compare as matching. It should return false otherwise.
// If you need to find *all* matching items in the list, you should probably use {{filter()}} instead.
// See Also: map(), filter(), reduce(), accumulate(), while(), for_n(), binsearch()
// Finds the first item in `list`, after index `start`, which the function literal in `func` will return true for.
// The signature of the function literal in `func` is `function (x)`, and it is expected to return true when the
// value compares as matching. It should return false otherwise. If you need to find *all* matching items in the
// list, you should use {{find_all()}} instead.
// See Also: find_all(), map(), filter(), reduce(), accumulate(), while(), for_n(), binsearch()
// Arguments:
// val = The value to look for.
// func = The function literal to use to check each item in `list`. Expects the signature `function (x)`, and a boolean return value.
// list = The list to search.
// ---
// start = The first item to check.
// func = The function literal to use to compare `val` against the items in `list`. Expects the signature `function (a,b)`, and a boolean return value. Default: `f_approx()`
function find_first(val, list, start=0, func=f_approx()) =
// Example:
// data = [8,5,3,7,4,2,9];
// echo(find_first(f_lte(4), data));
// // ECHO: 2
// Example:
// data = [8,5,3,7,4,2,9];
// echo(find_first(f_lte(4), data, start=3));
// // ECHO: 4
function find_first(func, list, start=0) =
assert(is_function(func))
assert(is_list(list))
assert(is_finite(start))
assert(is_function(func))
let(
l = len(list),
a = function(i)
i >= l? undef :
func(val, list[i])? i :
a(i+1)
listlen = len(list),
_find_first = function(indexnum) (
indexnum >= listlen? undef :
func(list[indexnum])? indexnum :
_find_first(indexnum+1)
)
)
a(start);
_find_first(start);
// Function: binsearch()
@ -287,7 +324,7 @@ function find_first(val, list, start=0, func=f_approx()) =
// idx = binsearch(44, items, cmp=function(a,b) a-b);
// Example:
// items = [for (i=[32:126]) [chr(i), i]];
// idx = binsearch("G"", items, idx=0);
// idx = binsearch("G", items, idx=0);
function binsearch(key, list, idx, cmp=f_cmp()) =
let(
a = function(s,e)
@ -417,17 +454,17 @@ function hashmap(hashsize=127,items,table) =
// f_str = f_1arg(function(a) str(a));
// fn_str = f_str(); // = function(a) str(a);
// fn_str3 = f_str(3); // = function() str(3);
function f_1arg(func) =
function f_1arg(target_func) =
function(a)
a==undef? function(x) func(x) :
function() func(a);
a==undef? function(x) target_func(x) :
function() target_func(a);
// Function: f_2arg()
// Topics: Function Literals, Function Literal Factories
// See Also: f_1arg(), f_3arg()
// Usage:
// fn = f_2arg(func);
// fn = f_2arg(target_func);
// Description:
// Takes a function literal that accepts two arguments, and returns a function
// literal factory that can be used to pre-fill out one or both of those arguments
@ -439,22 +476,44 @@ function f_1arg(func) =
// fn_3lt = f_lt(a=3); // = function(b) 3<b;
// fn_lt3 = f_lt(b=3); // = function(a) a<3;
// fn_3lt4 = f_lt(3,4); // = function() 3<4;
function f_2arg(func) =
function f_2arg(target_func) =
function(a,b)
a==undef && b==undef? function(x,y) func(x,y) :
a==undef? function(x) func(x,b) :
b==undef? function(x) func(a,x) :
function() func(a,b);
a==undef && b==undef? function(x,y) target_func(x,y) :
a==undef? function(x) target_func(x,b) :
b==undef? function(x) target_func(a,x) :
function() target_func(a,b);
// Function: f_2arg_simple()
// Topics: Function Literals, Function Literal Factories
// See Also: f_1arg(), f_3arg()
// Usage:
// fn = f_2arg_simple(target_func);
// Description:
// Takes a function literal that accepts two arguments, and returns a function
// literal factory that can be used to pre-fill out one or both of those arguments
// with a constant. When given a single argument, fills out the segond function
// argument with a constant.
// Example:
// f_lt = f_2arg_simple(function(a,b) a<b);
// fn_lt = f_lt(); // = function(a,b) a<b;
// fn_lt3 = f_lt(3); // = function(a) a<3;
// fn_3lt4 = f_lt(3,4); // = function() 3<4;
function f_2arg_simple(target_func) =
function(a,b)
a==undef && b==undef? function(x,y) target_func(x,y) :
b==undef? function(x) target_func(x,a) :
function() target_func(a,b);
// Function: f_3arg()
// Topics: Function Literals, Function Literal Factories
// See Also: f_1arg(), f_2arg()
// Usage:
// fn = f_3arg(func);
// fn = f_3arg(target_func);
// Description:
// Takes a function literal that accepts two arguments, and returns a function
// literal factory that can be used to pre-fill out one or both of those arguments
// Takes a function literal that accepts three arguments, and returns a function
// literal factory that can be used to pre-fill out some or all of those arguments
// with a constant.
// Example:
// p1 = [10,4]; p2 = [3,7];
@ -463,16 +522,16 @@ function f_2arg(func) =
// fn_va2 = f_lt(c=p1); // = function(a,b) vector_angle(a,b,p1);
// fn_va3 = f_lt(a=p2); // = function(a,c) vector_angle(a,p2,c);
// fn_va4 = f_lt(a=p1,c=p2); // = function() vector_angle(p1,b,p2);
function f_3arg(func) =
function f_3arg(target_func) =
function(a,b,c)
a==undef && b==undef && c==undef? function(x,y,z) func(x,y,z) :
a==undef && b==undef? function(x,y) func(x,y,c) :
a==undef && c==undef? function(x,y) func(x,b,y) :
b==undef && c==undef? function(x,y) func(a,x,y) :
a==undef? function(x) func(x,b,c) :
b==undef? function(x) func(a,x,c) :
c==undef? function(x) func(a,b,x) :
function() func(a,b,c);
a==undef && b==undef && c==undef? function(x,y,z) target_func(x,y,z) :
a==undef && b==undef? function(x,y) target_func(x,y,c) :
a==undef && c==undef? function(x,y) target_func(x,b,y) :
b==undef && c==undef? function(x,y) target_func(a,x,y) :
a==undef? function(x) target_func(x,b,c) :
b==undef? function(x) target_func(a,x,c) :
c==undef? function(x) target_func(a,b,x) :
function() target_func(a,b,c);
// Function: ival()
@ -482,13 +541,13 @@ function f_3arg(func) =
// Wraps a single-argument function literal so that it can take two arguments,
// passing the first argument along to the wrapped function.
// Arguments:
// func = The function of signature (x) to wrap.
// target_func = The function of signature (x) to wrap.
// FunctionLiteral Args:
// a = The argument that will be passed through.
// b = The argumen that will be discarded.
// Example:
// x = while(0, ival(f_lt(5)), xval(fngen_add(1)));
function ival(func) = function(a,b) func(a);
function ival(target_func) = function(a,b) target_func(a);
// Function: xval()
@ -498,13 +557,13 @@ function ival(func) = function(a,b) func(a);
// Wraps a single-argument function literal so that it can take two arguments,
// passing the first argument along to the wrapped function.
// Arguments:
// func = The function of signature (x) to wrap.
// target_func = The function of signature (x) to wrap.
// FunctionLiteral Args:
// a = The argument that will be passed through.
// b = The argumen that will be discarded.
// Example:
// x = while(0, ival(f_lt(5)), xval(fngen_add(1)));
function xval(func) = function(a,b) func(b);
function xval(target_func) = function(a,b) target_func(b);
@ -515,179 +574,137 @@ function xval(func) = function(a,b) func(b);
// Function: f_cmp()
// Usage:
// fn = f_cmp();
// fn = f_cmp(a=);
// fn = f_cmp(b=);
// fn = f_cmp(a=,b=);
// fn = f_cmp(b);
// fn = f_cmp(a,b);
// Description:
// A factory that generates function literals based on `a > b`, where either
// or both of the `a` or `b` arguments can be replaced with constants.
// Arguments:
// a = If given, replaces the first argument.
// b = If given, replaces the second argument.
// A factory that generates function literals that compare `a` and `b`, where one or
// both arguments can be replaced with constants. If `a` and `b` are equal, the function
// literal will return 0. If a<b then -1 is returned. If a>b then 1 is returned.
// Example:
// fn_cmp = f_cmp(); // = function(a,b) a==b?0: a>b?1: -1;
// fn_cmp = f_cmp(); // = function(a,b) a==b?0: a>b?1: -1;
// fn_cmp3 = f_cmp(3); // = function(a) a==3?0: a>3?1: -1;
// fn_3cmp = f_cmp(a=3); // = function(b) 3==b?0: 3>b?1: -1;
// fn_3cmp4 = f_cmp(a=3,b=4); // = function() 3==4?0: 3>4?1: -1;
function f_cmp(a,b) = f_2arg(function (a,b) a==b?0: a>b?1: -1)(a,b);
// fn_3cmp4 = f_cmp(3,4); // = function() 3==4?0: 3>4?1: -1;
function f_cmp(a,b) = f_2arg_simple(function (a,b) a==b?0: a>b?1: -1)(a,b);
// Function: f_gt()
// Usage:
// fn = f_gt();
// fn = f_gt(a=);
// fn = f_gt(b=);
// fn = f_gt(a=,b=);
// fn = f_gt(b);
// fn = f_gt(a,b);
// Description:
// A factory that generates function literals based on `a > b`, where either
// or both of the `a` or `b` arguments can be replaced with constants.
// Arguments:
// a = If given, replaces the first argument.
// b = If given, replaces the second argument.
// A factory that generates function literals based on `a > b`, where one
// or both of the arguments can be replaced with constants.
// Example:
// fn_gt = f_gt(); // = function(a,b) a>b;
// fn_gt = f_gt(); // = function(a,b) a>b;
// fn_gt3 = f_gt(3); // = function(a) a>3;
// fn_3gt = f_gt(a=3); // = function(b) 3>b;
// fn_3gt4 = f_gt(a=3,b=4); // = function() 3>4;
function f_gt(a,b) = f_2arg(function (a,b) a>b)(a,b);
// fn_3gt4 = f_gt(3,4); // = function() 3>4;
function f_gt(a,b) = f_2arg_simple(function (a,b) a>b)(a,b);
// Function: f_lt()
// Usage:
// fn = f_lt();
// fn = f_lt(a=);
// fn = f_lt(b=);
// fn = f_lt(a=,b=);
// fn = f_lt(b);
// fn = f_lt(a,b);
// Description:
// A factory that generates function literals based on `a < b`, where either
// or both of the `a` or `b` arguments can be replaced with constants.
// Arguments:
// a = If given, replaces the first argument.
// b = If given, replaces the second argument.
// A factory that generates function literals based on `a < b`, where one
// or both of the arguments can be replaced with constants.
// Example:
// fn_lt = f_lt(); // = function(a,b) a<b;
// fn_lt = f_lt(); // = function(a,b) a<b;
// fn_lt3 = f_lt(3); // = function(a) a<3;
// fn_3lt = f_lt(a=3); // = function(b) 3<b;
// fn_3lt4 = f_lt(a=3,b=4); // = function() 3<4;
function f_lt(a,b) = f_2arg(function (a,b) a<b)(a,b);
// fn_3lt4 = f_lt(3,4); // = function() 3<4;
function f_lt(a,b) = f_2arg_simple(function (a,b) a<b)(a,b);
// Function: f_gte()
// Usage:
// fn = f_gte();
// fn = f_gte(a=);
// fn = f_gte(b=);
// fn = f_gte(a=,b=);
// fn = f_gte(b);
// fn = f_gte(a,b);
// Description:
// A factory that generates function literals based on `a >= b`, where either
// or both of the `a` or `b` arguments can be replaced with constants.
// Arguments:
// a = If given, replaces the first argument.
// b = If given, replaces the second argument.
// A factory that generates function literals based on `a >= b`, where one
// or both of the arguments can be replaced with constants.
// Example:
// fn_gte = f_gte(); // = function(a,b) a>=b;
// fn_gte = f_gte(); // = function(a,b) a>=b;
// fn_gte3 = f_gte(3); // = function(a) a>=3;
// fn_3gte = f_gte(a=3); // = function(b) 3>=b;
// fn_3gte4 = f_gte(a=3,b=4); // = function() 3>=4;
function f_gte(a,b) = f_2arg(function (a,b) a>=b)(a,b);
// fn_3gte4 = f_gte(3,4); // = function() 3>=4;
function f_gte(a,b) = f_2arg_simple(function (a,b) a>=b)(a,b);
// Function: f_lte()
// Usage:
// fn = f_lte();
// fn = f_lte(a=);
// fn = f_lte(b=);
// fn = f_lte(a=,b=);
// fn = f_lte(b);
// fn = f_lte(a,b);
// Description:
// A factory that generates function literals based on `a <= b`, where either
// or both of the `a` or `b` arguments can be replaced with constants.
// Arguments:
// a = If given, replaces the first argument.
// b = If given, replaces the second argument.
// A factory that generates function literals based on `a <= b`, where
// one or both arguments can be replaced with constants.
// Example:
// fn_lte = f_lte(); // = function(a,b) a<=b;
// fn_lte = f_lte(); // = function(a,b) a<=b;
// fn_lte3 = f_lte(3); // = function(a) a<=3;
// fn_3lte = f_lte(a=3); // = function(b) 3<=b;
// fn_3lte4 = f_lte(a=3,b=4); // = function() 3<=4;
function f_lte(a,b) = f_2arg(function (a,b) a<=b)(a,b);
// fn_3lte4 = f_lte(3,4); // = function() 3<=4;
function f_lte(a,b) = f_2arg_simple(function (a,b) a<=b)(a,b);
// Function: f_eq()
// Usage:
// fn = f_eq();
// fn = f_eq(a=);
// fn = f_eq(b=);
// fn = f_eq(a=,b=);
// fn = f_eq(b);
// fn = f_eq(a,b);
// Description:
// A factory that generates function literals based on `a == b`, where either
// or both of the `a` or `b` arguments can be replaced with constants.
// Arguments:
// a = If given, replaces the first argument.
// b = If given, replaces the second argument.
// A factory that generates function literals based on `a == b`, where
// one or both arguments can be replaced with constants.
// Example:
// fn_eq = f_eq(); // = function(a,b) a==b;
// fn_eq3 = f_eq(3); // = function(a) a==3;
// fn_3eq4 = f_eq(a=3,b=4); // = function() 3==4;
function f_eq(a,b) = f_2arg(function (a,b) a==b)(a,b);
// fn_eq3 = f_eq(3); // = function(a) a==3;
// fn_3eq4 = f_eq(3,4); // = function() 3==4;
function f_eq(a,b) = f_2arg_simple(function (a,b) a==b)(a,b);
// Function: f_neq()
// Usage:
// fn = f_neq();
// fn = f_neq(a=);
// fn = f_neq(b=);
// fn = f_neq(a=,b=);
// fn = f_neq(b);
// fn = f_neq(a,b);
// Description:
// A factory that generates function literals based on `a != b`, where either
// or both of the `a` or `b` arguments can be replaced with constants.
// Arguments:
// a = If given, replaces the first argument.
// b = If given, replaces the second argument.
// A factory that generates function literals based on `a != b`, where
// one or both arguments can be replaced with constants.
// Example:
// fn_neq = f_neq(); // = function(a,b) a!=b;
// fn_neq3 = f_neq(3); // = function(a) a!=3;
// fn_3neq4 = f_neq(a=3,b=4); // = function() 3!=4;
function f_neq(a,b) = f_2arg(function (a,b) a!=b)(a,b);
// fn_neq3 = f_neq(3); // = function(a) a!=3;
// fn_3neq4 = f_neq(3,4); // = function() 3!=4;
function f_neq(a,b) = f_2arg_simple(function (a,b) a!=b)(a,b);
// Function: f_approx()
// Usage:
// fn = f_approx();
// fn = f_approx(a=);
// fn = f_approx(b=);
// fn = f_approx(a=,b=);
// fn = f_approx(b);
// fn = f_approx(a,b);
// Description:
// A factory that generates function literals based on `approx(a,b)`, where
// either or both of the `a` or `b` arguments can be replaced with constants.
// Arguments:
// a = If given, replaces the first argument.
// b = If given, replaces the second argument.
// one or both arguments can be replaced with constants.
// Example:
// fn_approx = f_approx(); // = function(a,b) approx(a,b);
// fn_approx = f_approx(); // = function(a,b) approx(a,b);
// fn_approx3 = f_approx(3); // = function(a) approx(a,3);
// fn_3approx = f_approx(a=3); // = function(b) approx(3,b);
// fn_3approx4 = f_approx(a=3,b=4); // = function() approx(3,4);
function f_approx(a,b) = f_2arg(function (a,b) approx(a,b))(a,b);
// fn_3approx4 = f_approx(3,4); // = function() approx(3,4);
function f_approx(a,b) = f_2arg_simple(function (a,b) approx(a,b))(a,b);
// Function: f_napprox()
// Usage:
// fn = f_napprox();
// fn = f_napprox(a=);
// fn = f_napprox(b=);
// fn = f_napprox(a=,b=);
// fn = f_napprox(b);
// fn = f_napprox(a,b);
// Description:
// A factory that generates function literals based on `napprox(a,b)`, where
// either or both of the `a` or `b` arguments can be replaced with constants.
// Arguments:
// a = If given, replaces the first argument.
// b = If given, replaces the second argument.
// A factory that generates function literals based on `!approx(a,b)`, where
// one or both arguments can be replaced with constants.
// Example:
// fn_napprox = f_napprox(); // = function(a,b) napprox(a,b);
// fn_napprox = f_napprox(); // = function(a,b) napprox(a,b);
// fn_napprox3 = f_napprox(3); // = function(a) napprox(a,3);
// fn_3napprox = f_napprox(a=3); // = function(b) napprox(3,b);
// fn_3napprox4 = f_napprox(a=3,b=4); // = function() napprox(3,4);
function f_napprox(a,b) = f_2arg(function (a,b) !approx(a,b))(a,b);
// fn_3napprox4 = f_napprox(3,4); // = function() napprox(3,4);
function f_napprox(a,b) = f_2arg_simple(function (a,b) !approx(a,b))(a,b);

View file

@ -488,7 +488,7 @@ function _covariance_evec_eval(points) =
evals = _eigenvals_symm_3(M), // eigenvalues in decreasing order
evec = _eigenvec_symm_3(M,evals,i=2) )
[pm, evec, evals[0] ];
// Function: plane_from_points()
// Usage:
@ -1638,17 +1638,26 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
// Description:
// Given a simple polygon in 2D or 3D, triangulates it and returns a list
// of triples indexing into the polygon vertices. When the optional argument `ind` is
// given, the it is used as an index list into `poly` to define the polygon. In that case,
// `poly` may have a length greater than `ind`. Otherwise, all points in `poly`
// given, it is used as an index list into `poly` to define the polygon. In that case,
// `poly` may have a length greater than `ind`. When `ind` is undefined, all points in `poly`
// are considered as vertices of the polygon.
// .
// The function may issue an error if it finds that the polygon is not simple
// (self-intersecting) or its vertices are collinear. It can work for 3d non-planar polygons
// if they are close enough to planar but may otherwise issue an error for this case.
// .
// For 2d polygons, the output triangles will have the same winding (CW or CCW) of
// the input polygon. For 3d polygons, the triangle windings will induce a normal
// vector with the same direction of the polygon normal.
// .
// The function produce correct triangulations for some non-twisted non-simple polygons.
// A polygon is non-twisted iff it is simple or there is a partition of it in
// simple polygons with the same winding. These polygons may have "touching" vertices
// (two vertices having the same coordinates, but distinct adjacencies) and "contact" edges
// (edges whose vertex pairs have the same pairwise coordinates but are in reversed order) but has
// no self-crossing. See examples bellow. If all polygon edges are contact edges,
// it returns an empty list for 2d polygons and issues an error for 3d polygons.
// .
// Self-crossing polygons have no consistent winding and usually produce an error but
// when an error is not issued the outputs are not correct triangulations. The function
// can work for 3d non-planar polygons if they are close enough to planar but may otherwise
// issue an error for this case.
// Arguments:
// poly = Array of vertices for the polygon.
// ind = A list indexing the vertices of the polygon in `poly`.
@ -1656,7 +1665,32 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
// Example(2D,NoAxes):
// poly = star(id=10, od=15,n=11);
// tris = polygon_triangulate(poly);
// for(tri=tris) stroke(select(poly,tri), width=.2, closed=true);
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
// color("magenta") up(2) stroke(poly,.25,closed=true);
// color("black") up(3) vnf_debug([poly,[]],faces=false,size=1);
// Example(2D,NoAxes): a polygon with a hole and one "contact" edge
// poly = [ [-10,0], [10,0], [0,10], [-10,0], [-4,4], [4,4], [0,2], [-4,4] ];
// tris = polygon_triangulate(poly);
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
// color("magenta") up(2) stroke(poly,.25,closed=true);
// color("black") up(3) vnf_debug([poly,[]],faces=false,size=1);
// Example(2D,NoAxes): a polygon with "touching" vertices and no holes
// poly = [ [0,0], [5,5], [-5,5], [0,0], [-5,-5], [5,-5] ];
// tris = polygon_triangulate(poly);
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
// color("magenta") up(2) stroke(poly,.25,closed=true);
// color("black") up(3) vnf_debug([poly,[]],faces=false,size=1);
// Example(2D,NoAxes): a polygon with "contact" edges and no holes
// poly = [ [0,0], [10,0], [10,10], [0,10], [0,0], [3,3], [7,3],
// [7,7], [7,3], [3,3] ];
// tris = polygon_triangulate(poly); // see from the top
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
// color("magenta") up(2) stroke(poly,.25,closed=true);
// color("black") up(3) vnf_debug([poly,[]],faces=false,size=1);
// Example(3D):
// include <BOSL2/polyhedra.scad>
// vnf = regular_polyhedron_info(name="dodecahedron",side=5,info="vnf");
@ -1665,82 +1699,42 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
// color("blue")
// vnf_wireframe(vnf_tri, width=.15);
function polygon_triangulate(poly, ind, eps=EPSILON) =
assert(is_path(poly), "Polygon `poly` should be a list of 2d or 3d points")
assert(is_path(poly) && len(poly)>=3, "Polygon `poly` should be a list of at least three 2d or 3d points")
assert(is_undef(ind)
|| (is_vector(ind) && min(ind)>=0 && max(ind)<len(poly) ),
"Improper or out of bounds list of indices")
let( ind = deduplicate_indexed(poly,is_undef(ind) ? count(len(poly)) : ind) )
len(ind) == 3 ? [ind] :
len(ind) < 3 ? [] :
len(poly[ind[0]]) == 3
? // represents the polygon projection on its plane as a 2d polygon
let(
pts = select(poly,ind),
nrm = polygon_normal(pts)
)
// here, instead of an error, it might return [] or undef
assert( nrm!=undef,
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
let(
imax = max_index([for(p=pts) norm(p-pts[0]) ]),
v1 = unit( pts[imax] - pts[0] ),
v2 = cross(v1,nrm),
prpts = pts*transpose([v1,v2])
)
[for(tri=_triangulate(prpts, count(len(ind)), eps)) select(ind,tri) ]
: let( cw = is_polygon_clockwise(select(poly, ind)) )
cw
? [for(tri=_triangulate( poly, reverse(ind), eps )) reverse(tri) ]
: _triangulate( poly, ind, eps );
let( ind = is_undef(ind) ? count(len(poly)) : ind )
len(ind) == 3
? _is_degenerate([poly[ind[0]], poly[ind[1]], poly[ind[2]]], eps) ? [] :
// non zero area
assert( norm(scalar_vec3(cross(poly[ind[1]]-poly[ind[0]], poly[ind[2]]-poly[ind[0]]))) > 2*eps,
"The polygon vertices are collinear.")
[ind]
: len(poly[ind[0]]) == 3
? // represents the polygon projection on its plane as a 2d polygon
let(
ind = deduplicate_indexed(poly, ind, eps)
)
len(ind)<3 ? [] :
let(
pts = select(poly,ind),
nrm = polygon_normal(pts)
)
assert( nrm!=undef,
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
let(
imax = max_index([for(p=pts) norm(p-pts[0]) ]),
v1 = unit( pts[imax] - pts[0] ),
v2 = cross(v1,nrm),
prpts = pts*transpose([v1,v2])
)
[for(tri=_triangulate(prpts, count(len(ind)), eps)) select(ind,tri) ]
: let( cw = is_polygon_clockwise(select(poly, ind)) )
cw
? [for(tri=_triangulate( poly, reverse(ind), eps )) reverse(tri) ]
: _triangulate( poly, ind, eps );
// requires ccw 2d polygons
// returns ccw triangles
function _old_triangulate(poly, ind, eps=EPSILON, tris=[]) =
len(ind)==3 ? concat(tris,[ind]) :
let( ear = _get_ear(poly,ind,eps) )
assert( ear!=undef,
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
let(
ear_tri = select(ind,ear,ear+2),
indr = select(ind,ear+2, ear) // indices of the remaining points
)
_triangulate(poly, indr, eps, concat(tris,[ear_tri]));
// search a valid ear from the remaining polygon
function _old_get_ear(poly, ind, eps, _i=0) =
_i>=len(ind) ? undef : // poly has no ears
let( // the _i-th ear candidate
p0 = poly[ind[_i]],
p1 = poly[ind[(_i+1)%len(ind)]],
p2 = poly[ind[(_i+2)%len(ind)]]
)
// if it is not a convex vertex, try the next one
_is_cw2(p0,p1,p2,eps) ? _get_ear(poly,ind,eps, _i=_i+1) :
let( // vertex p1 is convex; check if the triangle contains any other point
to_tst = select(ind,_i+3, _i-1),
pt2tst = select(poly,to_tst), // points other than p0, p1 and p2
q = [(p0-p2).y, (p2-p0).x], // orthogonal to ray [p0,p2] pointing right
q0 = q*p0,
atleft = [for(p=pt2tst) if(p*q<=q0) p ]
)
atleft==[] ? _i : // no point inside -> an ear
let(
q = [(p2-p1).y, (p1-p2).x], // orthogonal to ray [p1,p2] pointing right
q0 = q*p2,
atleft = [for(p=atleft) if(p*q<=q0) p ]
)
atleft==[] ? _i : // no point inside -> an ear
let(
q = [(p1-p0).y, (p0-p1).x], // orthogonal to ray [p1,p0] pointing right
q0 = q*p1,
atleft = [for(p=atleft) if(p*q<=q0) p ]
)
atleft==[] ? _i : // no point inside -> an ear
// check the next ear candidate
_get_ear(poly, ind, eps, _i=_i+1);
function _triangulate(poly, ind, eps=EPSILON, tris=[]) =
len(ind)==3
? _is_degenerate(select(poly,ind),eps)
@ -1749,18 +1743,18 @@ function _triangulate(poly, ind, eps=EPSILON, tris=[]) =
: let( ear = _get_ear(poly,ind,eps) )
assert( ear!=undef,
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
ear<0 // degenerate ear
? let( indr = select(ind,-ear+1, -ear-1) ) // discard it
_triangulate(poly, indr, eps, tris)
is_list(ear) // degenerate ear
? _triangulate(poly, select(ind,ear[0]+2, ear[0]), eps, tris) // discard it
: let(
ear_tri = select(ind,ear,ear+2),
indr = select(ind,ear+2, ear) // indices of the remaining points
indr = select(ind,ear+2, ear) // remaining point indices
)
_triangulate(poly, indr, eps, concat(tris,[ear_tri]));
// a returned ear will be:
// 1. a CCW triangle without points inside except possibly at its vertices
// 1. a CCW (non-degenerate) triangle, made of subsequent vertices, without other
// points inside except possibly at its vertices
// 2. or a degenerate triangle where two vertices are coincident
// the returned ear is specified by the index of `ind` of its first vertex
function _get_ear(poly, ind, eps, _i=0) =
@ -1770,29 +1764,25 @@ function _get_ear(poly, ind, eps, _i=0) =
p1 = poly[ind[(_i+1)%len(ind)]],
p2 = poly[ind[(_i+2)%len(ind)]]
)
// if it is a degenerate triangle, return it (codified)
_is_degenerate([p0,p1,p2],eps) ? -(_i+1) :
// if it is not a convex vertex, try the next one
// degenerate triangles are returned codified
_is_degenerate([p0,p1,p2],eps) ? [_i] :
// if it is not a convex vertex, check the next one
_is_cw2(p0,p1,p2,eps) ? _get_ear(poly,ind,eps, _i=_i+1) :
let( // vertex p1 is convex
// check if the triangle contains any other point
// except possibly its own vertices
to_tst = select(ind,_i+3, _i-1),
pt2tst = select(poly,to_tst), // points other than p0, p1 and p2
q = [(p0-p2).y, (p2-p0).x], // orthogonal to ray [p0,p2] pointing right
q0 = q*p0,
r = [(p2-p1).y, (p1-p2).x], // orthogonal to ray [p2,p1] pointing right
r0 = r*p2,
s = [(p1-p0).y, (p0-p1).x], // orthogonal to ray [p1,p0] pointing right
s0 = s*p1,
inside = [for(p=pt2tst)
if( p*q<=q0 && p*r<=r0 && p*s<=s0 ) // p is in the triangle
if( norm(p-p0)>eps // and doesn't coincide with
&& norm(p-p1)>eps // any of its vertices
inside = [for(p=select(poly,to_tst)) // for vertices other than p0, p1 and p2
if( (p-p0)*q<=0 && (p-p2)*r<=0 && (p-p1)*s<=0 // p is on the triangle
&& norm(p-p0)>eps // but not on any vertex of it
&& norm(p-p1)>eps
&& norm(p-p2)>eps )
p ]
)
inside==[] ? _i : // no point inside -> an ear
inside==[] ? _i : // found an ear
// check the next ear candidate
_get_ear(poly, ind, eps, _i=_i+1);

View file

@ -689,17 +689,12 @@ function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1);
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
function cumsum(v) =
assert(is_consistent(v), "The input is not consistent." )
_cumsum(v,_i=0,_acc=[]);
len(v)<=1 ? v :
_cumsum(v,_i=1,_acc=[v[0]]);
function _cumsum(v,_i=0,_acc=[]) =
_i==len(v) ? _acc :
_cumsum(
v, _i+1,
concat(
_acc,
[_i==0 ? v[_i] : last(_acc) + v[_i]]
)
);
_i>=len(v) ? _acc :
_cumsum( v, _i+1, [ each _acc, _acc[len(_acc)-1] + v[_i] ] );
// Function: sum_of_sines()

View file

@ -83,23 +83,23 @@ test_for_n();
module test_find_first() {
l = [7,3,9,1,6,1,3,2];
l = [7,3,8,1,6,1,3,2,9];
lt = function (val,x) val < x;
lte = function (val,x) val <= x;
gt = function (val,x) val > x;
gte = function (val,x) val >= x;
assert_equal(find_first(1,l), 3);
assert_equal(find_first(1,l,start=4), 5);
assert_equal(find_first(6,l), 4);
assert_equal(find_first(3,l,func=gt ), 3);
assert_equal(find_first(3,l,func=gte), 1);
assert_equal(find_first(3,l,func=lt ), 0);
assert_equal(find_first(7,l,func=lt ), 2);
assert_equal(find_first(7,l,func=lte), 0);
assert_equal(find_first(7,l,start=1,func=gte), 1);
assert_equal(find_first(7,l,start=3,func=gte), 3);
assert_equal(find_first(f_eq(1),l), 3);
assert_equal(find_first(f_eq(1),l,start=4), 5);
assert_equal(find_first(f_eq(6),l), 4);
assert_equal(find_first(f_gt(8),l), 8);
assert_equal(find_first(f_gte(8),l), 2);
assert_equal(find_first(f_lt(3),l), 3);
assert_equal(find_first(f_lt(7),l), 1);
assert_equal(find_first(f_lte(8),l), 0);
assert_equal(find_first(f_gte(8),l,start=1), 2);
assert_equal(find_first(f_gte(8),l,start=3), 8);
}
//test_find_first();
test_find_first();
module test_binsearch() {
@ -127,8 +127,8 @@ test_simple_hash();
module test_f_1arg() {
assert_equal(str(f_1arg(function (x) x)), "function(a) ((a == undef) ? function(x) func(x) : function() func(a))");
assert_equal(str(f_1arg(function (x) x)(3)), "function() func(a)");
assert_equal(str(f_1arg(function (x) x)), "function(a) ((a == undef) ? function(x) target_func(x) : function() target_func(a))");
assert_equal(str(f_1arg(function (x) x)(3)), "function() target_func(a)");
assert_equal(f_1arg(function (x) x)()(4), 4);
assert_equal(f_1arg(function (x) x)(3)(), 3);
}
@ -136,11 +136,11 @@ test_f_1arg();
module test_f_2arg() {
assert_equal(str(f_2arg(function (a,b) a+b)), "function(a, b) (((a == undef) && (b == undef)) ? function(x, y) func(x, y) : ((a == undef) ? function(x) func(x, b) : ((b == undef) ? function(x) func(a, x) : function() func(a, b))))");
assert_equal(str(f_2arg(function (a,b) a+b)(3)), "function(x) func(a, x)");
assert_equal(str(f_2arg(function (a,b) a+b)(a=3)), "function(x) func(a, x)");
assert_equal(str(f_2arg(function (a,b) a+b)(b=3)), "function(x) func(x, b)");
assert_equal(str(f_2arg(function (a,b) a+b)(3,4)), "function() func(a, b)");
assert_equal(str(f_2arg(function (a,b) a+b)), "function(a, b) (((a == undef) && (b == undef)) ? function(x, y) target_func(x, y) : ((a == undef) ? function(x) target_func(x, b) : ((b == undef) ? function(x) target_func(a, x) : function() target_func(a, b))))");
assert_equal(str(f_2arg(function (a,b) a+b)(3)), "function(x) target_func(a, x)");
assert_equal(str(f_2arg(function (a,b) a+b)(a=3)), "function(x) target_func(a, x)");
assert_equal(str(f_2arg(function (a,b) a+b)(b=3)), "function(x) target_func(x, b)");
assert_equal(str(f_2arg(function (a,b) a+b)(3,4)), "function() target_func(a, b)");
assert_equal(f_2arg(function (a,b) a+b)()(4,2), 6);
assert_equal(f_2arg(function (a,b) a+b)(3)(7), 10);
assert_equal(f_2arg(function (a,b) a+b)(a=2)(7), 9);
@ -150,10 +150,10 @@ test_f_2arg();
module test_f_3arg() {
assert_equal(str(f_3arg(function (a,b,c) a+b+c)), "function(a, b, c) ((((a == undef) && (b == undef)) && (c == undef)) ? function(x, y, z) func(x, y, z) : (((a == undef) && (b == undef)) ? function(x, y) func(x, y, c) : (((a == undef) && (c == undef)) ? function(x, y) func(x, b, y) : (((b == undef) && (c == undef)) ? function(x, y) func(a, x, y) : ((a == undef) ? function(x) func(x, b, c) : ((b == undef) ? function(x) func(a, x, c) : ((c == undef) ? function(x) func(a, b, x) : function() func(a, b, c))))))))");
assert_equal(str(f_3arg(function (a,b,c) a+b+c)(3)), "function(x, y) func(a, x, y)");
assert_equal(str(f_3arg(function (a,b,c) a+b+c)(3,4)), "function(x) func(a, b, x)");
assert_equal(str(f_3arg(function (a,b,c) a+b+c)(3,4,1)), "function() func(a, b, c)");
assert_equal(str(f_3arg(function (a,b,c) a+b+c)), "function(a, b, c) ((((a == undef) && (b == undef)) && (c == undef)) ? function(x, y, z) target_func(x, y, z) : (((a == undef) && (b == undef)) ? function(x, y) target_func(x, y, c) : (((a == undef) && (c == undef)) ? function(x, y) target_func(x, b, y) : (((b == undef) && (c == undef)) ? function(x, y) target_func(a, x, y) : ((a == undef) ? function(x) target_func(x, b, c) : ((b == undef) ? function(x) target_func(a, x, c) : ((c == undef) ? function(x) target_func(a, b, x) : function() target_func(a, b, c))))))))");
assert_equal(str(f_3arg(function (a,b,c) a+b+c)(3)), "function(x, y) target_func(a, x, y)");
assert_equal(str(f_3arg(function (a,b,c) a+b+c)(3,4)), "function(x) target_func(a, b, x)");
assert_equal(str(f_3arg(function (a,b,c) a+b+c)(3,4,1)), "function() target_func(a, b, c)");
assert_equal(f_3arg(function (a,b,c) a+b+c)()(4,2,1), 7);
assert_equal(f_3arg(function (a,b,c) a+b+c)(3)(7,3), 13);
assert_equal(f_3arg(function (a,b,c) a+b+c)(a=2)(7,1), 10);
@ -165,22 +165,22 @@ test_f_3arg();
module test_ival() {
assert_equal(str(ival(function (a) a)), "function(a, b) func(a)");
assert_equal(str(ival(function (a) a)), "function(a, b) target_func(a)");
assert_equal(ival(function (a) a)(3,5), 3);
}
test_ival();
module test_xval() {
assert_equal(str(xval(function (a) a)), "function(a, b) func(b)");
assert_equal(str(xval(function (a) a)), "function(a, b) target_func(b)");
assert_equal(xval(function (a) a)(3,5), 5);
}
test_xval();
module _test_fn1arg(dafunc,tests) {
assert_equal(str(dafunc()), "function(x) func(x)");
assert_equal(str(dafunc(3)), "function() func(a)");
assert_equal(str(dafunc()), "function(x) target_func(x)");
assert_equal(str(dafunc(3)), "function() target_func(a)");
for (test = tests) {
a = test[0];
r = test[1];
@ -191,11 +191,11 @@ module _test_fn1arg(dafunc,tests) {
module _test_fn2arg(dafunc,tests) {
assert_equal(str(dafunc()), "function(x, y) func(x, y)");
assert_equal(str(dafunc(3)), "function(x) func(a, x)");
assert_equal(str(dafunc(a=3)), "function(x) func(a, x)");
assert_equal(str(dafunc(b=3)), "function(x) func(x, b)");
assert_equal(str(dafunc(3,4)), "function() func(a, b)");
assert_equal(str(dafunc()), "function(x, y) target_func(x, y)");
assert_equal(str(dafunc(3)), "function(x) target_func(a, x)");
assert_equal(str(dafunc(a=3)), "function(x) target_func(a, x)");
assert_equal(str(dafunc(b=3)), "function(x) target_func(x, b)");
assert_equal(str(dafunc(3,4)), "function() target_func(a, b)");
for (test = tests) {
a = test[0];
b = test[1];
@ -210,17 +210,33 @@ module _test_fn2arg(dafunc,tests) {
}
module _test_fn2arg_simple(dafunc,tests) {
assert_equal(str(dafunc()), "function(x, y) target_func(x, y)");
assert_equal(str(dafunc(3)), "function(x) target_func(x, a)");
assert_equal(str(dafunc(3,4)), "function() target_func(a, b)");
for (test = tests) {
a = test[0];
b = test[1];
r = test[2];
assert_equal(dafunc(a=a,b=b)(), r);
assert_equal(dafunc(a,b)(), r);
assert_equal(dafunc(b)(a), r);
assert_equal(dafunc()(a,b), r);
}
}
module _test_fn3arg(dafunc,tests) {
assert_equal(str(dafunc()), "function(x, y, z) func(x, y, z)");
assert_equal(str(dafunc(3)), "function(x, y) func(a, x, y)");
assert_equal(str(dafunc(a=3)), "function(x, y) func(a, x, y)");
assert_equal(str(dafunc(b=3)), "function(x, y) func(x, b, y)");
assert_equal(str(dafunc(c=3)), "function(x, y) func(x, y, c)");
assert_equal(str(dafunc(3,4)), "function(x) func(a, b, x)");
assert_equal(str(dafunc(a=3,b=4)), "function(x) func(a, b, x)");
assert_equal(str(dafunc(a=3,c=4)), "function(x) func(a, x, c)");
assert_equal(str(dafunc(b=3,c=4)), "function(x) func(x, b, c)");
assert_equal(str(dafunc(3,4,5)), "function() func(a, b, c)");
assert_equal(str(dafunc()), "function(x, y, z) target_func(x, y, z)");
assert_equal(str(dafunc(3)), "function(x, y) target_func(a, x, y)");
assert_equal(str(dafunc(a=3)), "function(x, y) target_func(a, x, y)");
assert_equal(str(dafunc(b=3)), "function(x, y) target_func(x, b, y)");
assert_equal(str(dafunc(c=3)), "function(x, y) target_func(x, y, c)");
assert_equal(str(dafunc(3,4)), "function(x) target_func(a, b, x)");
assert_equal(str(dafunc(a=3,b=4)), "function(x) target_func(a, b, x)");
assert_equal(str(dafunc(a=3,c=4)), "function(x) target_func(a, x, c)");
assert_equal(str(dafunc(b=3,c=4)), "function(x) target_func(x, b, c)");
assert_equal(str(dafunc(3,4,5)), "function() target_func(a, b, c)");
for (test = tests) {
a = test[0];
b = test[1];
@ -241,7 +257,7 @@ module _test_fn3arg(dafunc,tests) {
module test_f_cmp() {
_test_fn2arg(
_test_fn2arg_simple(
function (a,b) f_cmp(a,b),
[[4,3,1],[3,3,0],[3,4,-1]]
);
@ -250,7 +266,7 @@ test_f_cmp();
module test_f_gt() {
_test_fn2arg(
_test_fn2arg_simple(
function (a,b) f_gt(a,b),
[[4,3,true],[3,3,false],[3,4,false]]
);
@ -259,7 +275,7 @@ test_f_gt();
module test_f_gte() {
_test_fn2arg(
_test_fn2arg_simple(
function (a,b) f_gte(a,b),
[[4,3,true],[3,3,true],[3,4,false]]
);
@ -268,7 +284,7 @@ test_f_gte();
module test_f_lt() {
_test_fn2arg(
_test_fn2arg_simple(
function (a,b) f_lt(a,b),
[[4,3,false],[3,3,false],[3,4,true]]
);
@ -277,7 +293,7 @@ test_f_lt();
module test_f_lte() {
_test_fn2arg(
_test_fn2arg_simple(
function (a,b) f_lte(a,b),
[[4,3,false],[3,3,true],[3,4,true]]
);
@ -286,7 +302,7 @@ test_f_lte();
module test_f_eq() {
_test_fn2arg(
_test_fn2arg_simple(
function (a,b) f_eq(a,b),
[[4,3,false],[3,3,true],[3,4,false]]
);
@ -295,7 +311,7 @@ test_f_eq();
module test_f_neq() {
_test_fn2arg(
_test_fn2arg_simple(
function (a,b) f_neq(a,b),
[[4,3,true],[3,3,false],[3,4,true]]
);
@ -304,7 +320,7 @@ test_f_neq();
module test_f_approx() {
_test_fn2arg(
_test_fn2arg_simple(
function (a,b) f_approx(a,b),
[[4,3,false],[3,3,true],[3,4,false],[1/3,0.33333333333333333333333333,true]]
);
@ -313,7 +329,7 @@ test_f_approx();
module test_f_napprox() {
_test_fn2arg(
_test_fn2arg_simple(
function (a,b) f_napprox(a,b),
[[4,3,true],[3,3,false],[3,4,true],[1/3,0.33333333333333333333333333,false]]
);

View file

@ -48,6 +48,7 @@ test_reindex_polygon();
test_align_polygon();
test_centroid();
test_point_in_polygon();
test_polygon_triangulate();
test_is_polygon_clockwise();
test_clockwise_polygon();
test_ccw_polygon();
@ -78,6 +79,21 @@ function info_str(list,i=0,string=chr(10)) =
: info_str(list,i+1,str(string,str(list[i][0],_valstr(list[i][1]),chr(10))));
module test_polygon_triangulate() {
poly0 = [ [0,0,1], [10,0,2], [10,10,0] ];
poly1 = [ [-10,0,-10], [10,0,10], [0,10,0], [-10,0,-10], [-4,4,-4], [4,4,4], [0,2,0], [-4,4,-4] ];
poly2 = [ [0,0], [5,5], [-5,5], [0,0], [-5,-5], [5,-5] ];
poly3 = [ [0,0], [10,0], [10,10], [10,13], [10,10], [0,10], [0,0], [3,3], [7,3], [7,7], [7,3], [3,3] ];
tris0 = sort(polygon_triangulate(poly0));
assert(approx(tris0, [[0, 1, 2]]));
tris1 = (polygon_triangulate(poly1));
assert(approx(tris1,( [[2, 3, 4], [6, 7, 0], [2, 4, 5], [6, 0, 1], [1, 2, 5], [5, 6, 1]])));
tris2 = (polygon_triangulate(poly2));
assert(approx(tris2,([[0, 1, 2], [3, 4, 5]])));
tris3 = (polygon_triangulate(poly3));
assert(approx(tris3,( [[5, 6, 7], [7, 8, 9], [10, 11, 0], [5, 7, 9], [10, 0, 1], [4, 5, 9], [9, 10, 1], [1, 4, 9]])));
}
module test__normalize_plane(){
plane = rands(-5,5,4,seed=333)+[10,0,0,0];
plane2 = _normalize_plane(plane);