diff --git a/beziers.scad b/beziers.scad index 53ba02e..193c23f 100644 --- a/beziers.scad +++ b/beziers.scad @@ -1469,7 +1469,7 @@ function bezier_patch_normals(patch, u, v) = // --- // splinesteps = Number of segments on the border edges of the bezier surface. You can specify [USTEPS,VSTEPS]. Default: 16 // style = {{vnf_vertex_array()}} style to use. Default: "default" -// Example: +// Example(3D): // patch = [ // // u=0,v=0 u=1,v=0 // [[-50,-50, 0], [-16,-50, 20], [ 16,-50, -20], [50,-50, 0]], diff --git a/vnf.scad b/vnf.scad index 2486f48..8a8664b 100644 --- a/vnf.scad +++ b/vnf.scad @@ -1655,7 +1655,7 @@ function _sort_pairs0(arr) = // --- // merge = set to false to suppress the automatic invocation of {{vnf_merge_points()}}. Default: true // idx = if true, return indices into VNF vertices instead of actual 3D points. Must set `merge=false` to enable this. Default: false -// Example(NoAxes,VPT=[7.06325,-20.8414,20.1803],VPD=292.705,VPR=[55,0,25.7]): In this example we know that the bezier patch VNF has no duplicate vertices, so we do not need to run {{vnf_merge_points()}}. +// Example(3D,NoAxes,VPT=[7.06325,-20.8414,20.1803],VPD=292.705,VPR=[55,0,25.7]): In this example we know that the bezier patch VNF has no duplicate vertices, so we do not need to run {{vnf_merge_points()}}. // include // patch = [ // // u=0,v=0 u=1,v=0 @@ -1669,7 +1669,7 @@ function _sort_pairs0(arr) = // boundary = vnf_boundary(bezvnf); // vnf_polyhedron(bezvnf); // stroke(boundary,color="green"); -// Example(NoAxes,VPT=[-11.1252,-19.7333,8.39927],VPD=82.6686,VPR=[71.8,0,335.3]): An example with two path components on the boundary. The output from {{vnf_halfspace()}} can contain duplicate vertices, so we must invoke {{vnf_merge_points()}}. +// Example(3D,NoAxes,VPT=[-11.1252,-19.7333,8.39927],VPD=82.6686,VPR=[71.8,0,335.3]): An example with two path components on the boundary. The output from {{vnf_halfspace()}} can contain duplicate vertices, so we must invoke {{vnf_merge_points()}}. // vnf = torus(id=20,od=40,$fn=28); // cutvnf=vnf_halfspace([0,1,0,0], // vnf_halfspace([-1,.5,-2.5,-12], vnf, closed=false), @@ -1721,14 +1721,14 @@ function vnf_boundary(vnf,merge=true,idx=false) = // delta = distance of offset, positive to offset out, negative to offset in // --- // merge = set to false to suppress the automatic invocation of {{vnf_merge_points()}}. Default: true -// Example: The original sphere is on the left and an offset sphere on the right. +// Example(3D): The original sphere is on the left and an offset sphere on the right. // vnf = sphere(d=100); // xdistribute(spacing=125){ // vnf_polyhedron(vnf); // vnf_polyhedron(vnf_small_offset(vnf,18)); // } -// Example: The polyhedron on the left is enlarged to match the size of the offset polyhedron on the right. Note that the offset does **not** preserve coplanarity of faces. This is because the vertices all move independently, so nothing constrains faces to remain coplanar. -// include +// Example(3D): The polyhedron on the left is enlarged to match the size of the offset polyhedron on the right. Note that the offset does **not** preserve coplanarity of faces. This is because the vertices all move independently, so nothing constrains faces to remain coplanar. +// include // vnf = regular_polyhedron_info("vnf","pentagonal icositetrahedron",d=25); // xdistribute(spacing=300){ // scale(11)vnf_polyhedron(vnf); @@ -1796,17 +1796,17 @@ function vnf_small_offset(vnf, delta, merge=true) = // --- // style = {{vnf_vertex_array()}} style to use. Default: "default" // merge = if false then do not run {{vnf_merge_points()}}. Default: true -// Example: +// Example(3D): // pts = [for(x=[30:5:180]) [for(y=[-6:0.5:6]) [7*y,x, sin(x)*y^2]]]; // vnf=vnf_vertex_array(pts); // vnf_polyhedron(vnf_sheet(vnf,-10)); -// Example: This example has multiple holes +// Example(3D): This example has multiple holes // pts = [for(x=[-10:2:10]) [ for(y=[-10:2:10]) [x,1.4*y,(-abs(x)^3+y^3)/250]]]; // vnf = vnf_vertex_array(pts); // newface = list_remove(vnf[1], [43,42,63,88,108,109,135,134,129,155,156,164,165]); // newvnf = [vnf[0],newface]; // vnf_polyhedron(vnf_sheet(newvnf,2)); -// Example: When applied to a sphere the sheet is constructed inward, so the object appears unchanged, but cutting it in half reveals that we have changed the sphere into a shell. +// Example(3D): When applied to a sphere the sheet is constructed inward, so the object appears unchanged, but cutting it in half reveals that we have changed the sphere into a shell. // vnf = sphere(d=100, $fn=28); // left_half() // vnf_polyhedron(vnf_sheet(vnf,15));