mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
Merge pull request #664 from revarbat/revarbat_dev
2D fix for circle attachability.
This commit is contained in:
commit
cc5ca7d070
2 changed files with 115 additions and 100 deletions
|
@ -61,7 +61,7 @@ function square(size=1, center, anchor, spin=0) =
|
||||||
module square(size=1, center, anchor, spin) {
|
module square(size=1, center, anchor, spin) {
|
||||||
anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]);
|
anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]);
|
||||||
size = is_num(size)? [size,size] : point2d(size);
|
size = is_num(size)? [size,size] : point2d(size);
|
||||||
attachable(anchor,spin, size=size, two_d=true) {
|
attachable(anchor,spin, two_d=true, size=size) {
|
||||||
_square(size, center=true);
|
_square(size, center=true);
|
||||||
children();
|
children();
|
||||||
}
|
}
|
||||||
|
@ -206,7 +206,7 @@ function circle(r, d, anchor=CENTER, spin=0) =
|
||||||
|
|
||||||
module circle(r, d, anchor=CENTER, spin=0) {
|
module circle(r, d, anchor=CENTER, spin=0) {
|
||||||
r = get_radius(r=r, d=d, dflt=1);
|
r = get_radius(r=r, d=d, dflt=1);
|
||||||
attachable(anchor,spin, r=r) {
|
attachable(anchor,spin, two_d=true, r=r) {
|
||||||
_circle(r=r);
|
_circle(r=r);
|
||||||
children();
|
children();
|
||||||
}
|
}
|
||||||
|
|
|
@ -13,17 +13,21 @@ shapes, and makes them attachables.
|
||||||
Anchoring allows you to align a side, edge, or corner of an object with the origin as it is
|
Anchoring allows you to align a side, edge, or corner of an object with the origin as it is
|
||||||
created. This is done by passing a vector into the `anchor=` argument. For roughly cubical
|
created. This is done by passing a vector into the `anchor=` argument. For roughly cubical
|
||||||
or prismoidal shapes, that vector points in the general direction of the side, edge, or
|
or prismoidal shapes, that vector points in the general direction of the side, edge, or
|
||||||
corner that will be aligned to. Each vector component should be -1, 0, or 1:
|
corner that will be aligned to. For example, a vector of [1,0,-1] refers to the lower-right
|
||||||
|
edge of the shape. Each vector component should be -1, 0, or 1:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
|
// Anchor at upper-front-left corner
|
||||||
cube([40,30,50], anchor=[-1,-1,1]);
|
cube([40,30,50], anchor=[-1,-1,1]);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
|
// Anchor at upper-right edge
|
||||||
cube([40,30,50], anchor=[1,0,1]);
|
cube([40,30,50], anchor=[1,0,1]);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
|
// Anchor at bottom face
|
||||||
cube([40,30,50], anchor=[0,0,-1]);
|
cube([40,30,50], anchor=[0,0,-1]);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -40,72 +44,85 @@ Constant | Direction | Value
|
||||||
`TOP`/`UP` | Z+ | `[ 0, 0, 1]` (3D only.)
|
`TOP`/`UP` | Z+ | `[ 0, 0, 1]` (3D only.)
|
||||||
`CENTER`/`CTR` | Centered | `[ 0, 0, 0]`
|
`CENTER`/`CTR` | Centered | `[ 0, 0, 0]`
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube([40,30,50], anchor=BACK+TOP);
|
cube([40,30,50], anchor=BACK+TOP);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube([40,30,50], anchor=FRONT);
|
cube([40,30,50], anchor=FRONT);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
Cylindrical attachables can be anchored similarly, except that only the Z vector component is
|
Cylindrical attachables can be anchored similarly, except that only the Z vector component is
|
||||||
required to be -1, 0, or 1. This allows anchoring to arbitrary edges around the cylinder or
|
required to be -1, 0, or 1. This allows anchoring to arbitrary edges around the cylinder or
|
||||||
cone:
|
cone:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cylinder(r1=25, r2=15, h=60, anchor=TOP+LEFT);
|
cylinder(r1=25, r2=15, h=60, anchor=TOP+LEFT);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cylinder(r1=25, r2=15, h=60, anchor=BOTTOM+FRONT);
|
cylinder(r1=25, r2=15, h=60, anchor=BOTTOM+FRONT);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cylinder(r1=25, r2=15, h=60, anchor=UP+spherical_to_xyz(1,30,90));
|
cylinder(r1=25, r2=15, h=60, anchor=UP+spherical_to_xyz(1,30,90));
|
||||||
```
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
Spherical shapes can use fully proportional anchoring vectors, letting you anchor to any point
|
Spherical shapes can use fully proportional anchoring vectors, letting you anchor to any point
|
||||||
on the surface of the sphere, just by pointing a vector at it:
|
on the surface of the sphere, just by pointing a vector at it:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
sphere(r=50, anchor=TOP);
|
sphere(r=50, anchor=TOP);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
sphere(r=50, anchor=TOP+FRONT);
|
sphere(r=50, anchor=TOP+FRONT);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
sphere(r=50, anchor=spherical_to_xyz(1,-30,60));
|
sphere(r=50, anchor=spherical_to_xyz(1,-30,60));
|
||||||
```
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
Some attachable shapes may provide specific named anchors for shape-specific anchoring. These
|
Some attachable shapes may provide specific named anchors for shape-specific anchoring. These
|
||||||
will be given as strings and will be specific to that type of attachable:
|
will be given as strings and will be specific to that type of attachable:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
teardrop(d=100, l=20, anchor="cap");
|
teardrop(d=100, l=20, anchor="cap");
|
||||||
```
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
Some shapes, for backwards compatability reasons, can take a `center=` argument. This just
|
Some shapes, for backwards compatability reasons, can take a `center=` argument. This just
|
||||||
overrides the `anchor=` argument. A `center=true` argument is the same as `anchor=CENTER`.
|
overrides the `anchor=` argument. A `center=true` argument is the same as `anchor=CENTER`.
|
||||||
A `center=false` argument can mean `anchor=[-1,-1,-1]` for a cube, or `anchor=BOTTOM` for a
|
A `center=false` argument can mean `anchor=[-1,-1,-1]` for a cube, or `anchor=BOTTOM` for a
|
||||||
cylinder.
|
cylinder.
|
||||||
|
|
||||||
Many 2D shapes provided by BOSL2 are also anchorable. Due to technical limitations of OpenSCAD,
|
---
|
||||||
however, `square()` and `circle()` are *not*. BOSL2 provides `rect()` and `oval()` as attachable
|
|
||||||
and anchorable equivalents. You can only anchor on the XY plane, of course, but you can use the
|
Many 2D shapes provided by BOSL2 are also anchorable. Even the built-in `square()` and `circle()`
|
||||||
same `FRONT`, `BACK`, `LEFT`, `RIGHT`, and `CENTER` anchor constants.
|
modules have been overridden to enable attachability and anchoring. The `anchor=` options for 2D
|
||||||
|
shapes can accept 3D vectors, but only the X and Y components will be used:
|
||||||
|
|
||||||
```openscad-2D
|
```openscad-2D
|
||||||
rect([40,30], anchor=BACK+LEFT);
|
square([40,30], anchor=BACK+LEFT);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad-2D
|
```openscad-2D
|
||||||
oval(d=50, anchor=FRONT);
|
circle(d=50, anchor=BACK);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad-2D
|
```openscad-2D
|
||||||
hexagon(d=50, anchor=BACK);
|
hexagon(d=50, anchor=LEFT);
|
||||||
|
```
|
||||||
|
|
||||||
|
```openscad-2D
|
||||||
|
oval(d=[50,30], anchor=FRONT);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
@ -113,22 +130,21 @@ hexagon(d=50, anchor=BACK);
|
||||||
Attachable shapes also can be spun in place as you create them. You can do this by passing in
|
Attachable shapes also can be spun in place as you create them. You can do this by passing in
|
||||||
the angle to spin by into the `spin=` argument:
|
the angle to spin by into the `spin=` argument:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube([20,20,40], center=true, spin=45);
|
cube([20,20,40], center=true, spin=45);
|
||||||
```
|
```
|
||||||
|
|
||||||
You can even spin around each of the three axes in one pass, by giving 3 angles to `spin=` as a
|
You can even spin around each of the three axes in one pass, by giving 3 angles to `spin=` as a
|
||||||
vector, like [Xang,Yang,Zang]:
|
vector, like [Xang,Yang,Zang]:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube([20,20,40], center=true, spin=[10,20,30]);
|
cube([20,20,40], center=true, spin=[10,20,30]);
|
||||||
```
|
```
|
||||||
|
|
||||||
You can also apply spin to 2D shapes from BOSL2. Again, you should use `rect()` and `oval()`
|
You can also apply spin to 2D shapes from BOSL2, though only by scalar angle:
|
||||||
instead of `square()` and `circle()`:
|
|
||||||
|
|
||||||
```openscad-2D
|
```openscad-2D
|
||||||
rect([40,30], spin=30);
|
square([40,30], spin=30);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad-2D
|
```openscad-2D
|
||||||
|
@ -141,7 +157,7 @@ Another way to specify a rotation for an attachable shape, is to pass a 3D vecto
|
||||||
`orient=` argument. This lets you specify what direction to tilt the top of the shape towards.
|
`orient=` argument. This lets you specify what direction to tilt the top of the shape towards.
|
||||||
For example, you can make a cone that is tilted up and to the right like this:
|
For example, you can make a cone that is tilted up and to the right like this:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cylinder(h=100, r1=50, r2=20, orient=UP+RIGHT);
|
cylinder(h=100, r1=50, r2=20, orient=UP+RIGHT);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -152,39 +168,39 @@ You can *not* use `orient=` with 2D shapes.
|
||||||
When giving `anchor=`, `spin=`, and `orient=`, they are applied anchoring first, spin second,
|
When giving `anchor=`, `spin=`, and `orient=`, they are applied anchoring first, spin second,
|
||||||
then orient last. For example, here's a cube:
|
then orient last. For example, here's a cube:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube([20,20,50]);
|
cube([20,20,50]);
|
||||||
```
|
```
|
||||||
|
|
||||||
You can center it with an `anchor=CENTER` argument:
|
You can center it with an `anchor=CENTER` argument:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube([20,20,50], anchor=CENTER);
|
cube([20,20,50], anchor=CENTER);
|
||||||
```
|
```
|
||||||
|
|
||||||
Add a 45 degree spin:
|
Add a 45 degree spin:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube([20,20,50], anchor=CENTER, spin=45);
|
cube([20,20,50], anchor=CENTER, spin=45);
|
||||||
```
|
```
|
||||||
|
|
||||||
Now tilt the top up and forward:
|
Now tilt the top up and forward:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube([20,20,50], anchor=CENTER, spin=45, orient=UP+FWD);
|
cube([20,20,50], anchor=CENTER, spin=45, orient=UP+FWD);
|
||||||
```
|
```
|
||||||
|
|
||||||
Something that may confuse new users is that adding spin to a cylinder may seem nonsensical.
|
Something that may confuse new users is that adding spin to a cylinder may seem nonsensical.
|
||||||
However, since spin is applied *after* anchoring, it can actually have a significant effect:
|
However, since spin is applied *after* anchoring, it can actually have a significant effect:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cylinder(d=50, l=40, anchor=FWD, spin=-30);
|
cylinder(d=50, l=40, anchor=FWD, spin=-30);
|
||||||
```
|
```
|
||||||
|
|
||||||
For 2D shapes, you can mix `anchor=` with `spin=`, but not with `orient=`.
|
For 2D shapes, you can mix `anchor=` with `spin=`, but not with `orient=`.
|
||||||
|
|
||||||
```openscad-2D
|
```openscad-2D
|
||||||
rect([40,30], anchor=BACK+LEFT, spin=30);
|
square([40,30], anchor=BACK+LEFT, spin=30);
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
@ -193,7 +209,7 @@ The reason attachables are called that, is because they can be attached to each
|
||||||
You can do that by making one attachable shape be a child of another attachable shape.
|
You can do that by making one attachable shape be a child of another attachable shape.
|
||||||
By default, the child of an attachable is attached to the center of the parent shape.
|
By default, the child of an attachable is attached to the center of the parent shape.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube(50,center=true)
|
cube(50,center=true)
|
||||||
cylinder(d1=50,d2=20,l=50);
|
cylinder(d1=50,d2=20,l=50);
|
||||||
```
|
```
|
||||||
|
@ -202,7 +218,7 @@ To attach to a different place on the parent, you can use the `attach()` module.
|
||||||
this will attach the bottom of the child to the given position on the parent. The orientation
|
this will attach the bottom of the child to the given position on the parent. The orientation
|
||||||
of the child will be overridden to point outwards from the center of the parent, more or less:
|
of the child will be overridden to point outwards from the center of the parent, more or less:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube(50,center=true)
|
cube(50,center=true)
|
||||||
attach(TOP) cylinder(d1=50,d2=20,l=20);
|
attach(TOP) cylinder(d1=50,d2=20,l=20);
|
||||||
```
|
```
|
||||||
|
@ -210,7 +226,7 @@ cube(50,center=true)
|
||||||
If you give `attach()` a second anchor argument, it attaches that anchor on the child to the
|
If you give `attach()` a second anchor argument, it attaches that anchor on the child to the
|
||||||
first anchor on the parent:
|
first anchor on the parent:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube(50,center=true)
|
cube(50,center=true)
|
||||||
attach(TOP,TOP) cylinder(d1=50,d2=20,l=20);
|
attach(TOP,TOP) cylinder(d1=50,d2=20,l=20);
|
||||||
```
|
```
|
||||||
|
@ -220,13 +236,13 @@ it's useful to have the child overlap the parent by insetting a bit. You can do
|
||||||
`overlap=` argument to `attach()`. A positive value will inset the child into the parent, and
|
`overlap=` argument to `attach()`. A positive value will inset the child into the parent, and
|
||||||
a negative value will outset out from the parent:
|
a negative value will outset out from the parent:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube(50,center=true)
|
cube(50,center=true)
|
||||||
attach(TOP,overlap=10)
|
attach(TOP,overlap=10)
|
||||||
cylinder(d=20,l=20);
|
cylinder(d=20,l=20);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube(50,center=true)
|
cube(50,center=true)
|
||||||
attach(TOP,overlap=-20)
|
attach(TOP,overlap=-20)
|
||||||
cylinder(d=20,l=20);
|
cylinder(d=20,l=20);
|
||||||
|
@ -235,14 +251,14 @@ cube(50,center=true)
|
||||||
If you want to position the child at the parent's anchorpoint, without re-orienting, you can
|
If you want to position the child at the parent's anchorpoint, without re-orienting, you can
|
||||||
use the `position()` module:
|
use the `position()` module:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube(50,center=true)
|
cube(50,center=true)
|
||||||
position(RIGHT) cylinder(d1=50,d2=20,l=20);
|
position(RIGHT) cylinder(d1=50,d2=20,l=20);
|
||||||
```
|
```
|
||||||
|
|
||||||
You can attach or position more than one child at a time by enclosing them all in braces:
|
You can attach or position more than one child at a time by enclosing them all in braces:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube(50, center=true) {
|
cube(50, center=true) {
|
||||||
attach(TOP) cylinder(d1=50,d2=20,l=20);
|
attach(TOP) cylinder(d1=50,d2=20,l=20);
|
||||||
position(RIGHT) cylinder(d1=50,d2=20,l=20);
|
position(RIGHT) cylinder(d1=50,d2=20,l=20);
|
||||||
|
@ -252,29 +268,27 @@ cube(50, center=true) {
|
||||||
If you want to attach the same shape to multiple places on the same parent, you can pass the
|
If you want to attach the same shape to multiple places on the same parent, you can pass the
|
||||||
desired anchors as a list to the `attach()` or `position()` modules:
|
desired anchors as a list to the `attach()` or `position()` modules:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube(50, center=true)
|
cube(50, center=true)
|
||||||
attach([RIGHT,FRONT],TOP) cylinder(d1=50,d2=20,l=20);
|
attach([RIGHT,FRONT],TOP) cylinder(d1=50,d2=20,l=20);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube(50, center=true)
|
cube(50, center=true)
|
||||||
position([TOP,RIGHT,FRONT]) cylinder(d1=50,d2=20,l=20);
|
position([TOP,RIGHT,FRONT]) cylinder(d1=50,d2=20,l=20);
|
||||||
```
|
```
|
||||||
|
|
||||||
## Attaching 2D Children
|
## Attaching 2D Children
|
||||||
You can use attachments in 2D as well, but only in the XY plane. Also, the built-in `square()`
|
You can use attachments in 2D as well, but only in the XY plane:
|
||||||
and `circle()` 2D modules do not support attachments. Instead, you should use the `rect()` and
|
|
||||||
`oval()` modules:
|
|
||||||
|
|
||||||
```openscad-2D
|
```openscad-2D
|
||||||
rect(50,center=true)
|
square(50,center=true)
|
||||||
attach(RIGHT,FRONT)
|
attach(RIGHT,FRONT)
|
||||||
trapezoid(w1=30,w2=0,h=30);
|
trapezoid(w1=30,w2=0,h=30);
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad-2D
|
```openscad-2D
|
||||||
oval(d=50)
|
circle(d=50)
|
||||||
attach(BACK,FRONT,overlap=5)
|
attach(BACK,FRONT,overlap=5)
|
||||||
trapezoid(w1=30,w2=0,h=30);
|
trapezoid(w1=30,w2=0,h=30);
|
||||||
```
|
```
|
||||||
|
@ -283,7 +297,7 @@ oval(d=50)
|
||||||
One way that is useful to show the position and orientation of an anchorpoint is by attaching
|
One way that is useful to show the position and orientation of an anchorpoint is by attaching
|
||||||
an anchor arrow to that anchor.
|
an anchor arrow to that anchor.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube(40, center=true)
|
cube(40, center=true)
|
||||||
attach(LEFT+TOP)
|
attach(LEFT+TOP)
|
||||||
anchor_arrow();
|
anchor_arrow();
|
||||||
|
@ -291,7 +305,7 @@ cube(40, center=true)
|
||||||
|
|
||||||
For large objects, you can change the size of the arrow with the `s=` argument.
|
For large objects, you can change the size of the arrow with the `s=` argument.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
sphere(d=100)
|
sphere(d=100)
|
||||||
attach(LEFT+TOP)
|
attach(LEFT+TOP)
|
||||||
anchor_arrow(s=30);
|
anchor_arrow(s=30);
|
||||||
|
@ -299,24 +313,24 @@ sphere(d=100)
|
||||||
|
|
||||||
To show all the standard cardinal anchorpoints, you can use the `show_anchors()` module.
|
To show all the standard cardinal anchorpoints, you can use the `show_anchors()` module.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cube(40, center=true)
|
cube(40, center=true)
|
||||||
show_anchors();
|
show_anchors();
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cylinder(h=40, d=40, center=true)
|
cylinder(h=40, d=40, center=true)
|
||||||
show_anchors();
|
show_anchors();
|
||||||
```
|
```
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
sphere(d=40)
|
sphere(d=40)
|
||||||
show_anchors();
|
show_anchors();
|
||||||
```
|
```
|
||||||
|
|
||||||
For large objects, you can again change the size of the arrows with the `s=` argument.
|
For large objects, you can again change the size of the arrows with the `s=` argument.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
cylinder(h=100, d=100, center=true)
|
cylinder(h=100, d=100, center=true)
|
||||||
show_anchors(s=30);
|
show_anchors(s=30);
|
||||||
```
|
```
|
||||||
|
@ -336,7 +350,7 @@ tag.
|
||||||
For example, to difference away a child cylinder from the middle of a parent cube, you can
|
For example, to difference away a child cylinder from the middle of a parent cube, you can
|
||||||
do this:
|
do this:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
diff("hole")
|
diff("hole")
|
||||||
cube(100, center=true)
|
cube(100, center=true)
|
||||||
cylinder(h=101, d=50, center=true, $tags="hole");
|
cylinder(h=101, d=50, center=true, $tags="hole");
|
||||||
|
@ -346,7 +360,7 @@ If you give both the `neg=` and `pos=` arguments to `diff()`, then the shapes ma
|
||||||
given to `neg=` will be differenced away from the shapes marked with tags given to `pos=`.
|
given to `neg=` will be differenced away from the shapes marked with tags given to `pos=`.
|
||||||
Everything else will be unioned to the result.
|
Everything else will be unioned to the result.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
diff("hole", "post")
|
diff("hole", "post")
|
||||||
cube(100, center=true)
|
cube(100, center=true)
|
||||||
attach([RIGHT,TOP]) {
|
attach([RIGHT,TOP]) {
|
||||||
|
@ -357,7 +371,7 @@ cube(100, center=true)
|
||||||
|
|
||||||
The `keep=` argument takes tags for shapes that you want to keep in the output.
|
The `keep=` argument takes tags for shapes that you want to keep in the output.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
diff("dish", keep="antenna")
|
diff("dish", keep="antenna")
|
||||||
cube(100, center=true)
|
cube(100, center=true)
|
||||||
attach([FRONT,TOP], overlap=33) {
|
attach([FRONT,TOP], overlap=33) {
|
||||||
|
@ -368,7 +382,7 @@ cube(100, center=true)
|
||||||
|
|
||||||
If you need to mark multiple children with a tag, you can use the `tags()` module.
|
If you need to mark multiple children with a tag, you can use the `tags()` module.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
diff("hole")
|
diff("hole")
|
||||||
cube(100, center=true)
|
cube(100, center=true)
|
||||||
attach([FRONT,TOP], overlap=20)
|
attach([FRONT,TOP], overlap=20)
|
||||||
|
@ -381,22 +395,22 @@ cube(100, center=true)
|
||||||
The parent object can be differenced away from other shapes. Tags are inherited by children,
|
The parent object can be differenced away from other shapes. Tags are inherited by children,
|
||||||
though, so you will need to set the tags of the children as well as the parent.
|
though, so you will need to set the tags of the children as well as the parent.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
diff("hole")
|
diff("hole")
|
||||||
cube([20,11,45], center=true, $tags="hole")
|
cube([20,11,45], center=true, $tags="hole")
|
||||||
cube([40,10,90], center=true, $tags="body");
|
cube([40,10,90], center=true, $tags="body");
|
||||||
```
|
```
|
||||||
|
|
||||||
Tags (and therefore tag-based operations like `diff()`) only work correctly with attachable children.
|
Tags (and therefore tag-based operations like `diff()`) only work correctly with attachable
|
||||||
However, a number of built-in modules for making shapes are *not* attachable. Some notable
|
children. However, a number of built-in modules for making shapes are *not* attachable.
|
||||||
non-attachable modules are `circle()`, `square()`, `text()`, `linear_extrude()`, `rotate_extrude()`,
|
Some notable non-attachable modules are `text()`, `linear_extrude()`, `rotate_extrude()`,
|
||||||
`polygon()`, `polyhedron()`, `import()`, `surface()`, `union()`, `difference()`, `intersection()`,
|
`polygon()`, `polyhedron()`, `import()`, `surface()`, `union()`, `difference()`,
|
||||||
`offset()`, `hull()`, and `minkowski()`.
|
`intersection()`, `offset()`, `hull()`, and `minkowski()`.
|
||||||
|
|
||||||
To allow you to use tags-based operations with non-attachable shapes, you can wrap them with the
|
To allow you to use tags-based operations with non-attachable shapes, you can wrap them with the
|
||||||
`tags()` module to specify their tags. For example:
|
`tags()` module to specify their tags. For example:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
diff("hole")
|
diff("hole")
|
||||||
cuboid(50)
|
cuboid(50)
|
||||||
attach(TOP)
|
attach(TOP)
|
||||||
|
@ -412,7 +426,7 @@ To perform an intersection of attachables, you can use the `intersect()` module.
|
||||||
argument to `a=`, the parent and all children *not* tagged with that will be intersected by
|
argument to `a=`, the parent and all children *not* tagged with that will be intersected by
|
||||||
everything that *is* tagged with it.
|
everything that *is* tagged with it.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
intersect("bounds")
|
intersect("bounds")
|
||||||
cube(100, center=true)
|
cube(100, center=true)
|
||||||
cylinder(h=100, d1=120, d2=95, center=true, $fn=72, $tags="bounds");
|
cylinder(h=100, d1=120, d2=95, center=true, $fn=72, $tags="bounds");
|
||||||
|
@ -421,7 +435,7 @@ cube(100, center=true)
|
||||||
If given both the `a=` and `b=` arguments, then shapes marked with tags given to `a=` will be
|
If given both the `a=` and `b=` arguments, then shapes marked with tags given to `a=` will be
|
||||||
intersected with shapes marked with tags given to `b=`, then unioned with all other shapes.
|
intersected with shapes marked with tags given to `b=`, then unioned with all other shapes.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
intersect("pole", "cap")
|
intersect("pole", "cap")
|
||||||
cube(100, center=true)
|
cube(100, center=true)
|
||||||
attach([TOP,RIGHT]) {
|
attach([TOP,RIGHT]) {
|
||||||
|
@ -433,7 +447,7 @@ cube(100, center=true)
|
||||||
If the `keep=` argument is given, anything marked with tags passed to it will be unioned with
|
If the `keep=` argument is given, anything marked with tags passed to it will be unioned with
|
||||||
the result of the union:
|
the result of the union:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
intersect("bounds", keep="pole")
|
intersect("bounds", keep="pole")
|
||||||
cube(100, center=true) {
|
cube(100, center=true) {
|
||||||
cylinder(h=100, d1=120, d2=95, center=true, $fn=72, $tags="bounds");
|
cylinder(h=100, d1=120, d2=95, center=true, $fn=72, $tags="bounds");
|
||||||
|
@ -445,7 +459,7 @@ cube(100, center=true) {
|
||||||
You can use the `hulling()` module to hull shapes marked with a given tag together, before
|
You can use the `hulling()` module to hull shapes marked with a given tag together, before
|
||||||
unioning the result with every other shape.
|
unioning the result with every other shape.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
hulling("hull")
|
hulling("hull")
|
||||||
cube(50, center=true, $tags="hull") {
|
cube(50, center=true, $tags="hull") {
|
||||||
cyl(h=100, d=20);
|
cyl(h=100, d=20);
|
||||||
|
@ -465,7 +479,7 @@ and move it such that the BACK, RIGHT (X+,Y+) side of the shape will be aligned
|
||||||
edges. The shape will be tagged as a "mask" so that you can use `diff("mask")`. For example,
|
edges. The shape will be tagged as a "mask" so that you can use `diff("mask")`. For example,
|
||||||
here's a shape for rounding an edge:
|
here's a shape for rounding an edge:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module round_edge(l,r) difference() {
|
module round_edge(l,r) difference() {
|
||||||
translate([-1,-1,-l/2])
|
translate([-1,-1,-l/2])
|
||||||
cube([r+1,r+1,l]);
|
cube([r+1,r+1,l]);
|
||||||
|
@ -477,7 +491,7 @@ round_edge(l=30, r=19);
|
||||||
|
|
||||||
You can use that mask to round various edges of a cube:
|
You can use that mask to round various edges of a cube:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module round_edge(l,r) difference() {
|
module round_edge(l,r) difference() {
|
||||||
translate([-1,-1,-l/2])
|
translate([-1,-1,-l/2])
|
||||||
cube([r+1,r+1,l]);
|
cube([r+1,r+1,l]);
|
||||||
|
@ -497,7 +511,7 @@ BACK RIGHT TOP (X+,Y+,Z+) side of the shape will be aligned with the given corne
|
||||||
will be tagged as a "mask" so that you can use `diff("mask")`. For example, here's a shape for
|
will be tagged as a "mask" so that you can use `diff("mask")`. For example, here's a shape for
|
||||||
rounding a corner:
|
rounding a corner:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module round_corner(r) difference() {
|
module round_corner(r) difference() {
|
||||||
translate(-[1,1,1])
|
translate(-[1,1,1])
|
||||||
cube(r+1);
|
cube(r+1);
|
||||||
|
@ -509,7 +523,7 @@ round_corner(r=10);
|
||||||
|
|
||||||
You can use that mask to round various corners of a cube:
|
You can use that mask to round various corners of a cube:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module round_corner(r) difference() {
|
module round_corner(r) difference() {
|
||||||
translate(-[1,1,1])
|
translate(-[1,1,1])
|
||||||
cube(r+1);
|
cube(r+1);
|
||||||
|
@ -525,7 +539,7 @@ cube([50,60,70],center=true)
|
||||||
### Mix and Match Masks
|
### Mix and Match Masks
|
||||||
You can use `edge_mask()` and `corner_mask()` together as well:
|
You can use `edge_mask()` and `corner_mask()` together as well:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module round_corner(r) difference() {
|
module round_corner(r) difference() {
|
||||||
translate(-[1,1,1])
|
translate(-[1,1,1])
|
||||||
cube(r+1);
|
cube(r+1);
|
||||||
|
@ -566,7 +580,7 @@ mask2d_roundover(10);
|
||||||
|
|
||||||
Using that mask profile, you can mask the edges of a cube like:
|
Using that mask profile, you can mask the edges of a cube like:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
diff("mask")
|
diff("mask")
|
||||||
cube([50,60,70],center=true)
|
cube([50,60,70],center=true)
|
||||||
edge_profile("ALL")
|
edge_profile("ALL")
|
||||||
|
@ -576,7 +590,7 @@ cube([50,60,70],center=true)
|
||||||
### `corner_profile()`
|
### `corner_profile()`
|
||||||
You can use the same profile to make a rounded corner mask as well:
|
You can use the same profile to make a rounded corner mask as well:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
diff("mask")
|
diff("mask")
|
||||||
cube([50,60,70],center=true)
|
cube([50,60,70],center=true)
|
||||||
corner_profile("ALL", r=10)
|
corner_profile("ALL", r=10)
|
||||||
|
@ -587,7 +601,7 @@ cube([50,60,70],center=true)
|
||||||
As a simple shortcut to apply a profile mask to all edges and corners of a face, you can use the
|
As a simple shortcut to apply a profile mask to all edges and corners of a face, you can use the
|
||||||
`face_profile()` module:
|
`face_profile()` module:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
diff("mask")
|
diff("mask")
|
||||||
cube([50,60,70],center=true)
|
cube([50,60,70],center=true)
|
||||||
face_profile(TOP, r=10)
|
face_profile(TOP, r=10)
|
||||||
|
@ -599,7 +613,7 @@ cube([50,60,70],center=true)
|
||||||
Usually, when coloring a shape with the `color()` module, the parent color overrides the colors of
|
Usually, when coloring a shape with the `color()` module, the parent color overrides the colors of
|
||||||
all children. This is often not what you want:
|
all children. This is often not what you want:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
$fn = 24;
|
$fn = 24;
|
||||||
color("red") spheroid(d=3) {
|
color("red") spheroid(d=3) {
|
||||||
attach(CENTER,BOT) color("white") cyl(h=10, d=1) {
|
attach(CENTER,BOT) color("white") cyl(h=10, d=1) {
|
||||||
|
@ -611,7 +625,7 @@ color("red") spheroid(d=3) {
|
||||||
If you use the `recolor()` module, however, the child's color overrides the color of the parent.
|
If you use the `recolor()` module, however, the child's color overrides the color of the parent.
|
||||||
This is probably easier to understand by example:
|
This is probably easier to understand by example:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
$fn = 24;
|
$fn = 24;
|
||||||
recolor("red") spheroid(d=3) {
|
recolor("red") spheroid(d=3) {
|
||||||
attach(CENTER,BOT) recolor("white") cyl(h=10, d=1) {
|
attach(CENTER,BOT) recolor("white") cyl(h=10, d=1) {
|
||||||
|
@ -634,7 +648,7 @@ arguments of `attachable()`.
|
||||||
In the most basic form, where the shape is fully cuboid, with top and bottom of the same size,
|
In the most basic form, where the shape is fully cuboid, with top and bottom of the same size,
|
||||||
and directly over one another, you can just use `size=`.
|
and directly over one another, you can just use `size=`.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) {
|
module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) {
|
||||||
attachable(anchor,spin,orient, size=[s*3,s,s]) {
|
attachable(anchor,spin,orient, size=[s*3,s,s]) {
|
||||||
union() {
|
union() {
|
||||||
|
@ -651,7 +665,7 @@ When the shape is prismoidal, where the top is a different size from the bottom,
|
||||||
the `size2=` argument as well. While `size=` takes all three axes sizes, the `size2=` argument
|
the `size2=` argument as well. While `size=` takes all three axes sizes, the `size2=` argument
|
||||||
only takes the [X,Y] sizes of the top of the shape.
|
only takes the [X,Y] sizes of the top of the shape.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module prismoidal(size=[100,100,100], scale=0.5, anchor=CENTER, spin=0, orient=UP) {
|
module prismoidal(size=[100,100,100], scale=0.5, anchor=CENTER, spin=0, orient=UP) {
|
||||||
attachable(anchor,spin,orient, size=size, size2=[size.x, size.y]*scale) {
|
attachable(anchor,spin,orient, size=size, size2=[size.x, size.y]*scale) {
|
||||||
hull() {
|
hull() {
|
||||||
|
@ -672,7 +686,7 @@ When the top of the prismoid can be shifted away from directly above the bottom,
|
||||||
the `shift=` argument. The `shift=` argument takes an [X,Y] vector of the offset of the center
|
the `shift=` argument. The `shift=` argument takes an [X,Y] vector of the offset of the center
|
||||||
of the top from the XY center of the bottom of the shape.
|
of the top from the XY center of the bottom of the shape.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module prismoidal(size=[100,100,100], scale=0.5, shift=[0,0], anchor=CENTER, spin=0, orient=UP) {
|
module prismoidal(size=[100,100,100], scale=0.5, shift=[0,0], anchor=CENTER, spin=0, orient=UP) {
|
||||||
attachable(anchor,spin,orient, size=size, size2=[size.x, size.y]*scale, shift=shift) {
|
attachable(anchor,spin,orient, size=size, size2=[size.x, size.y]*scale, shift=shift) {
|
||||||
hull() {
|
hull() {
|
||||||
|
@ -693,7 +707,7 @@ In the case that the prismoid is not oriented vertically, (ie, where the `shift=
|
||||||
arguments should refer to a plane other than XY) you can use the `axis=` argument. This lets
|
arguments should refer to a plane other than XY) you can use the `axis=` argument. This lets
|
||||||
you make prismoids naturally oriented forwards/backwards or sideways.
|
you make prismoids naturally oriented forwards/backwards or sideways.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module yprismoidal(
|
module yprismoidal(
|
||||||
size=[100,100,100], scale=0.5, shift=[0,0],
|
size=[100,100,100], scale=0.5, shift=[0,0],
|
||||||
anchor=CENTER, spin=0, orient=UP
|
anchor=CENTER, spin=0, orient=UP
|
||||||
|
@ -721,7 +735,7 @@ yprismoidal([100,60,30], scale=1.5, shift=[20,20]) show_anchors(20);
|
||||||
### Cylindrical Attachables
|
### Cylindrical Attachables
|
||||||
To make a cylindrical shape attachable, you use the `l`, and `r`/`d`, args of `attachable()`.
|
To make a cylindrical shape attachable, you use the `l`, and `r`/`d`, args of `attachable()`.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module twistar(l,r,d, anchor=CENTER, spin=0, orient=UP) {
|
module twistar(l,r,d, anchor=CENTER, spin=0, orient=UP) {
|
||||||
r = get_radius(r=r,d=d,dflt=1);
|
r = get_radius(r=r,d=d,dflt=1);
|
||||||
attachable(anchor,spin,orient, r=r, l=l) {
|
attachable(anchor,spin,orient, r=r, l=l) {
|
||||||
|
@ -736,7 +750,7 @@ twistar(l=100, r=40) show_anchors(20);
|
||||||
If the cylinder is elipsoidal in shape, you can pass the inequal X/Y sizes as a 2-item vector
|
If the cylinder is elipsoidal in shape, you can pass the inequal X/Y sizes as a 2-item vector
|
||||||
to the `r=` or `d=` argument.
|
to the `r=` or `d=` argument.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module ovalstar(l,rx,ry, anchor=CENTER, spin=0, orient=UP) {
|
module ovalstar(l,rx,ry, anchor=CENTER, spin=0, orient=UP) {
|
||||||
attachable(anchor,spin,orient, r=[rx,ry], l=l) {
|
attachable(anchor,spin,orient, r=[rx,ry], l=l) {
|
||||||
linear_extrude(height=l, center=true, convexity=4)
|
linear_extrude(height=l, center=true, convexity=4)
|
||||||
|
@ -750,7 +764,7 @@ ovalstar(l=100, rx=50, ry=30) show_anchors(20);
|
||||||
|
|
||||||
For cylindrical shapes that arent oriented vertically, use the `axis=` argument.
|
For cylindrical shapes that arent oriented vertically, use the `axis=` argument.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module ytwistar(l,r,d, anchor=CENTER, spin=0, orient=UP) {
|
module ytwistar(l,r,d, anchor=CENTER, spin=0, orient=UP) {
|
||||||
r = get_radius(r=r,d=d,dflt=1);
|
r = get_radius(r=r,d=d,dflt=1);
|
||||||
attachable(anchor,spin,orient, r=r, l=l, axis=BACK) {
|
attachable(anchor,spin,orient, r=r, l=l, axis=BACK) {
|
||||||
|
@ -767,7 +781,7 @@ ytwistar(l=100, r=40) show_anchors(20);
|
||||||
To make a conical shape attachable, you use the `l`, `r1`/`d1`, and `r2`/`d2`, args of
|
To make a conical shape attachable, you use the `l`, `r1`/`d1`, and `r2`/`d2`, args of
|
||||||
`attachable()`.
|
`attachable()`.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module twistar(l, r,r1,r2, d,d1,d2, anchor=CENTER, spin=0, orient=UP) {
|
module twistar(l, r,r1,r2, d,d1,d2, anchor=CENTER, spin=0, orient=UP) {
|
||||||
r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=1);
|
r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=1);
|
||||||
r2 = get_radius(r1=r2,r=r,d1=d2,d=d,dflt=1);
|
r2 = get_radius(r1=r2,r=r,d1=d2,d=d,dflt=1);
|
||||||
|
@ -780,10 +794,10 @@ module twistar(l, r,r1,r2, d,d1,d2, anchor=CENTER, spin=0, orient=UP) {
|
||||||
twistar(l=100, r1=40, r2=20) show_anchors(20);
|
twistar(l=100, r1=40, r2=20) show_anchors(20);
|
||||||
```
|
```
|
||||||
|
|
||||||
If the cone is elipsoidal in shape, you can pass the inequal X/Y sizes as a 2-item vectors
|
If the cone is ellipsoidal in shape, you can pass the inequal X/Y sizes as a 2-item vectors
|
||||||
to the `r1=`/`r2=` or `d1=`/`d2=` arguments.
|
to the `r1=`/`r2=` or `d1=`/`d2=` arguments.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module ovalish(l,rx1,ry1,rx2,ry2, anchor=CENTER, spin=0, orient=UP) {
|
module ovalish(l,rx1,ry1,rx2,ry2, anchor=CENTER, spin=0, orient=UP) {
|
||||||
attachable(anchor,spin,orient, r1=[rx1,ry1], r2=[rx2,ry2], l=l) {
|
attachable(anchor,spin,orient, r1=[rx1,ry1], r2=[rx2,ry2], l=l) {
|
||||||
hull() {
|
hull() {
|
||||||
|
@ -800,9 +814,10 @@ module ovalish(l,rx1,ry1,rx2,ry2, anchor=CENTER, spin=0, orient=UP) {
|
||||||
ovalish(l=100, rx1=50, ry1=30, rx2=30, ry2=50) show_anchors(20);
|
ovalish(l=100, rx1=50, ry1=30, rx2=30, ry2=50) show_anchors(20);
|
||||||
```
|
```
|
||||||
|
|
||||||
For conical shapes that are not oriented vertically, use the `axis=` argument.
|
For conical shapes that are not oriented vertically, use the `axis=` argument to indicate the
|
||||||
|
direction of the primary shape axis:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module ytwistar(l, r,r1,r2, d,d1,d2, anchor=CENTER, spin=0, orient=UP) {
|
module ytwistar(l, r,r1,r2, d,d1,d2, anchor=CENTER, spin=0, orient=UP) {
|
||||||
r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=1);
|
r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=1);
|
||||||
r2 = get_radius(r1=r2,r=r,d1=d2,d=d,dflt=1);
|
r2 = get_radius(r1=r2,r=r,d1=d2,d=d,dflt=1);
|
||||||
|
@ -819,7 +834,7 @@ ytwistar(l=100, r1=40, r2=20) show_anchors(20);
|
||||||
### Spherical Attachables
|
### Spherical Attachables
|
||||||
To make a spherical shape attachable, you use the `r`/`d` args of `attachable()`.
|
To make a spherical shape attachable, you use the `r`/`d` args of `attachable()`.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module spikeball(r, d, anchor=CENTER, spin=0, orient=UP) {
|
module spikeball(r, d, anchor=CENTER, spin=0, orient=UP) {
|
||||||
r = get_radius(r=r,d=d,dflt=1);
|
r = get_radius(r=r,d=d,dflt=1);
|
||||||
attachable(anchor,spin,orient, r=r*1.1) {
|
attachable(anchor,spin,orient, r=r*1.1) {
|
||||||
|
@ -835,7 +850,7 @@ spikeball(r=50) show_anchors(20);
|
||||||
|
|
||||||
If the shape is more of an ovoid, you can pass a 3-item vector of sizes to `r=` or `d=`.
|
If the shape is more of an ovoid, you can pass a 3-item vector of sizes to `r=` or `d=`.
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module spikeball(r, d, scale, anchor=CENTER, spin=0, orient=UP) {
|
module spikeball(r, d, scale, anchor=CENTER, spin=0, orient=UP) {
|
||||||
r = get_radius(r=r,d=d,dflt=1);
|
r = get_radius(r=r,d=d,dflt=1);
|
||||||
attachable(anchor,spin,orient, r=r*1.1*scale) {
|
attachable(anchor,spin,orient, r=r*1.1*scale) {
|
||||||
|
@ -929,8 +944,8 @@ aren't on the perimeter of the shape. This is what named string anchors are for
|
||||||
the `teardrop()` shape uses a cylindrical geometry for it's vector anchors, but it also provides
|
the `teardrop()` shape uses a cylindrical geometry for it's vector anchors, but it also provides
|
||||||
a named anchor "cap" that is at the tip of the hat of the teardrop shape.
|
a named anchor "cap" that is at the tip of the hat of the teardrop shape.
|
||||||
|
|
||||||
Named anchors are passed as an array of `anchorpt()`s to the `anchors=` argument of `attachable()`.
|
Named anchors are passed as an array of `named_anchor()`s to the `anchors=` argument of `attachable()`.
|
||||||
The `anchorpt()` call takes a name string, a positional point, an orientation vector, and a spin.
|
The `named_anchor()` call takes a name string, a positional point, an orientation vector, and a spin.
|
||||||
The name is the name of the anchor. The positional point is where the anchorpoint is at. The
|
The name is the name of the anchor. The positional point is where the anchorpoint is at. The
|
||||||
orientation vector is the direction that a child attached at that anchorpoint should be oriented.
|
orientation vector is the direction that a child attached at that anchorpoint should be oriented.
|
||||||
The spin is the number of degrees that an attached child should be rotated counter-clockwise around
|
The spin is the number of degrees that an attached child should be rotated counter-clockwise around
|
||||||
|
@ -939,10 +954,10 @@ the orientation vector. Spin is optional, and defaults to 0.
|
||||||
To make a simple attachable shape similar to a `teardrop()` that provides a "cap" anchor, you may
|
To make a simple attachable shape similar to a `teardrop()` that provides a "cap" anchor, you may
|
||||||
define it like this:
|
define it like this:
|
||||||
|
|
||||||
```openscad
|
```openscad-3D
|
||||||
module raindrop(r, thick, anchor=CENTER, spin=0, orient=UP) {
|
module raindrop(r, thick, anchor=CENTER, spin=0, orient=UP) {
|
||||||
anchors = [
|
anchors = [
|
||||||
anchorpt("cap", [0,r/sin(45),0], BACK, 0)
|
named_anchor("cap", [0,r/sin(45),0], BACK, 0)
|
||||||
];
|
];
|
||||||
attachable(anchor,spin,orient, r=r, l=thick, anchors=anchors) {
|
attachable(anchor,spin,orient, r=r, l=thick, anchors=anchors) {
|
||||||
linear_extrude(height=thick, center=true) {
|
linear_extrude(height=thick, center=true) {
|
||||||
|
@ -960,9 +975,9 @@ If you want multiple named anchors, just add them to the list of anchors:
|
||||||
```openscad-FlatSpin,VPD=150
|
```openscad-FlatSpin,VPD=150
|
||||||
module raindrop(r, thick, anchor=CENTER, spin=0, orient=UP) {
|
module raindrop(r, thick, anchor=CENTER, spin=0, orient=UP) {
|
||||||
anchors = [
|
anchors = [
|
||||||
anchorpt("captop", [0,r/sin(45), thick/2], BACK+UP, 0),
|
named_anchor("captop", [0,r/sin(45), thick/2], BACK+UP, 0),
|
||||||
anchorpt("cap", [0,r/sin(45), 0 ], BACK, 0),
|
named_anchor("cap", [0,r/sin(45), 0 ], BACK, 0),
|
||||||
anchorpt("capbot", [0,r/sin(45),-thick/2], BACK+DOWN, 0)
|
named_anchor("capbot", [0,r/sin(45),-thick/2], BACK+DOWN, 0)
|
||||||
];
|
];
|
||||||
attachable(anchor,spin,orient, r=r, l=thick, anchors=anchors) {
|
attachable(anchor,spin,orient, r=r, l=thick, anchors=anchors) {
|
||||||
linear_extrude(height=thick, center=true) {
|
linear_extrude(height=thick, center=true) {
|
||||||
|
|
Loading…
Reference in a new issue