diff --git a/geometry.scad b/geometry.scad index 8832589..bc74473 100644 --- a/geometry.scad +++ b/geometry.scad @@ -646,14 +646,14 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // bounded = If false, the line is considered unbounded. If true, it is treated as a bounded line segment. If given as `[true, false]` or `[false, true]`, the boundedness of the points are specified individually, allowing the line to be treated as a half-bounded ray. Default: false (unbounded) // nonzero = set to true to use the nonzero rule for determining it points are in a polygon. See point_in_polygon. Default: false. // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) -// Example: The line intersects the 3d hexagon in a single point. +// Example(3D): The line intersects the 3d hexagon in a single point. // hex = zrot(140,p=rot([-45,40,20],p=path3d(hexagon(r=15)))); // line = [[5,0,-13],[-3,-5,13]]; // isect = polygon_line_intersection(hex,line); // stroke(hex,closed=true); // stroke(line); -// color("red")move(isect)sphere(r=1); -// Example: In 2D things are more complicated. The output is a list of intersection parts, in the simplest case a single segment. +// color("red")move(isect)sphere(r=1,$fn=12); +// Example(2D): In 2D things are more complicated. The output is a list of intersection parts, in the simplest case a single segment. // hex = hexagon(r=15); // line = [[-20,10],[25,-7]]; // isect = polygon_line_intersection(hex,line); @@ -665,7 +665,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) sphere(r=1); // else // stroke(part); -// Example: In 2D things are more complicated. Here the line is treated as a ray. +// Example(2D): Here the line is treated as a ray. // hex = hexagon(r=15); // line = [[0,0],[25,-7]]; // isect = polygon_line_intersection(hex,line,RAY); @@ -677,7 +677,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Here the intersection is a single point, which is returned as a single point "path" on the path list. +// Example(2D): Here the intersection is a single point, which is returned as a single point "path" on the path list. // hex = hexagon(r=15); // line = [[15,-10],[15,13]]; // isect = polygon_line_intersection(hex,line,RAY); @@ -689,7 +689,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Another way to get a single segment +// Example(2D): Another way to get a single segment // hex = hexagon(r=15); // line = rot(30,p=[[15,-10],[15,25]],cp=[15,0]); // isect = polygon_line_intersection(hex,line,RAY); @@ -701,7 +701,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Single segment again +// Example(2D): Single segment again // star = star(r=15,n=8,step=2); // line = [[20,-5],[-5,20]]; // isect = polygon_line_intersection(star,line,RAY); @@ -713,7 +713,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Solution is two points +// Example(2D): Solution is two points // star = star(r=15,n=8,step=3); // line = rot(22.5,p=[[15,-10],[15,20]],cp=[15,0]); // isect = polygon_line_intersection(star,line,SEGMENT); @@ -725,7 +725,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Solution is list of three segments +// Example(2D): Solution is list of three segments // star = star(r=25,ir=9,n=8); // line = [[-25,12],[25,12]]; // isect = polygon_line_intersection(star,line); @@ -737,7 +737,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Solution is a mixture of segments and points +// Example(2D): Solution is a mixture of segments and points // star = star(r=25,ir=9,n=7); // line = [left(10,p=star[8]), right(50,p=star[8])]; // isect = polygon_line_intersection(star,line); @@ -1591,22 +1591,17 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) = // poly = Array of vertices for the polygon. // ind = A list indexing the vertices of the polygon in `poly`. // eps = A maximum tolerance in geometrical tests. Default: EPSILON -// Example: +// Example(2D): // poly = star(id=10, od=15,n=11); // tris = polygon_triangulate(poly); -// polygon(poly); -// up(1) -// color("blue"); -// for(tri=tris) trace_path(select(poly,tri), size=.1, closed=true); -// -// Example: -// include +// for(tri=tris) stroke(select(poly,tri), width=.1, closed=true); +// Example(3D): +// include // vnf = regular_polyhedron_info(name="dodecahedron",side=5,info="vnf"); // %vnf_polyhedron(vnf); // vnf_tri = [vnf[0], [for(face=vnf[1]) each polygon_triangulate(vnf[0], face) ] ]; // color("blue") -// vnf_wireframe(vnf_tri, d=.15); - +// vnf_wireframe(vnf_tri, width=.15); function polygon_triangulate(poly, ind, eps=EPSILON) = assert(is_path(poly), "Polygon `poly` should be a list of 2d or 3d points") assert(is_undef(ind) diff --git a/vnf.scad b/vnf.scad index 45cb54d..3d90002 100644 --- a/vnf.scad +++ b/vnf.scad @@ -206,35 +206,35 @@ function vnf_vertex_array( // points = List of point lists for each row // row_wrap = If true then add faces connecting the first row and last row. These rows must differ by at most 2 in length. // reverse = Set this to reverse the direction of the faces -// Example: Each row has one more point than the preceeding one. +// Example(3D): Each row has one more point than the preceeding one. // pts = [for(y=[1:1:10]) [for(x=[0:y-1]) [x,y,y]]]; // vnf = vnf_tri_array(pts); -// vnf_wireframe(vnf,d=.1); +// vnf_wireframe(vnf,width=0.1); // color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9); -// Example: Each row has one more point than the preceeding one. +// Example(3D): Each row has one more point than the preceeding one. // pts = [for(y=[0:2:10]) [for(x=[-y/2:y/2]) [x,y,y]]]; // vnf = vnf_tri_array(pts); -// vnf_wireframe(vnf,d=.1); +// vnf_wireframe(vnf,width=0.1); // color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9); -// Example: Chaining two VNFs to construct a cone with one point length change between rows. +// Example(3D): Chaining two VNFs to construct a cone with one point length change between rows. // pts1 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[0,180]),10-z)]; // pts2 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[180,360]),10-z)]; // vnf = vnf_tri_array(pts1, // vnf=vnf_tri_array(pts2)); -// color("green")vnf_wireframe(vnf,d=.1); +// color("green")vnf_wireframe(vnf,width=0.1); // vnf_polyhedron(vnf); -// Example: Cone with length change two between rows +// Example(3D): Cone with length change two between rows // pts1 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[0,180]),10-z)]; // pts2 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[180,360]),10-z)]; // vnf = vnf_tri_array(pts1, // vnf=vnf_tri_array(pts2)); -// color("green")vnf_wireframe(vnf,d=.1); +// color("green")vnf_wireframe(vnf,width=0.1); // vnf_polyhedron(vnf); -// Example: Point count can change irregularly +// Example(3D): Point count can change irregularly // lens = [10,9,7,5,6,8,8,10]; // pts = [for(y=idx(lens)) lerpn([-lens[y],y,y],[lens[y],y,y],lens[y])]; // vnf = vnf_tri_array(pts); -// vnf_wireframe(vnf,d=.1); +// vnf_wireframe(vnf,width=0.1); // color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9); function vnf_tri_array(points, row_wrap=false, reverse=false, vnf=EMPTY_VNF) = let( @@ -422,234 +422,6 @@ function vnf_triangulate(vnf) = -// Section: Turning a VNF into geometry - - -// Module: vnf_polyhedron() -// Usage: -// vnf_polyhedron(vnf); -// vnf_polyhedron([VNF, VNF, VNF, ...]); -// Description: -// Given a VNF structure, or a list of VNF structures, creates a polyhedron from them. -// Arguments: -// vnf = A VNF structure, or list of VNF structures. -// convexity = Max number of times a line could intersect a wall of the shape. -// extent = If true, calculate anchors by extents, rather than intersection. Default: true. -// cp = Centerpoint of VNF to use for anchoring when `extent` is false. Default: `[0, 0, 0]` -// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `"origin"` -// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` -// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` -module vnf_polyhedron(vnf, convexity=2, extent=true, cp=[0,0,0], anchor="origin", spin=0, orient=UP) { - vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf; - cp = is_def(cp) ? cp : vnf_centroid(vnf); - attachable(anchor,spin,orient, vnf=vnf, extent=extent, cp=cp) { - polyhedron(vnf[0], vnf[1], convexity=convexity); - children(); - } -} - - -// Module: vnf_wireframe() -// Usage: -// vnf_wireframe(vnf, ); -// Description: -// Given a VNF, creates a wire frame ball-and-stick model of the polyhedron with a cylinder for -// each edge and a sphere at each vertex. The width parameter specifies the width of the sticks -// that form the wire frame. -// Arguments: -// vnf = A vnf structure -// width = width of the cylinders forming the wire frame. Default: 1 -// Example: -// $fn=32; -// ball = sphere(r=20, $fn=6); -// vnf_wireframe(ball,width=1); -// Example: -// include -// $fn=32; -// cube_oct = regular_polyhedron_info("vnf", name="cuboctahedron", or=20); -// vnf_wireframe(cube_oct); -// Example: The spheres at the vertex are imperfect at aligning with the cylinders, so especially at low $fn things look prety ugly. This is normal. -// include -// $fn=8; -// octahedron = regular_polyhedron_info("vnf", name="octahedron", or=20); -// vnf_wireframe(octahedron,width=5); -module vnf_wireframe(vnf, width=1) -{ - vertex = vnf[0]; - edges = unique([for (face=vnf[1], i=idx(face)) - sort([face[i], select(face,i+1)]) - ]); - for (e=edges) extrude_from_to(vertex[e[0]],vertex[e[1]]) circle(d=width); - move_copies(vertex) sphere(d=width); -} - - -// Section: Operations on VNFs - -// Function: vnf_volume() -// Usage: -// vol = vnf_volume(vnf); -// Description: -// Returns the volume enclosed by the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and -// no holes; otherwise the results are undefined. Returns a positive volume if face direction is clockwise and a negative volume -// if face direction is counter-clockwise. - -// Divide the polyhedron into tetrahedra with the origin as one vertex and sum up the signed volume. -function vnf_volume(vnf) = - let(verts = vnf[0]) - sum([ - for(face=vnf[1], j=[1:1:len(face)-2]) - cross(verts[face[j+1]], verts[face[j]]) * verts[face[0]] - ])/6; - - -// Function: vnf_area() -// Usage: -// area = vnf_area(vnf); -// Description: -// Returns the surface area in any VNF by adding up the area of all its faces. The VNF need not be a manifold. -function vnf_area(vnf) = - let(verts=vnf[0]) - sum([for(face=vnf[1]) polygon_area(select(verts,face))]); - - -// Function: vnf_centroid() -// Usage: -// vol = vnf_centroid(vnf); -// Description: -// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and -// no holes; otherwise the results are undefined. - -// Divide the solid up into tetrahedra with the origin as one vertex. -// The centroid of a tetrahedron is the average of its vertices. -// The centroid of the total is the volume weighted average. -function vnf_centroid(vnf) = - assert(is_vnf(vnf) && len(vnf[0])!=0 ) - let( - verts = vnf[0], - pos = sum([ - for(face=vnf[1], j=[1:1:len(face)-2]) let( - v0 = verts[face[0]], - v1 = verts[face[j]], - v2 = verts[face[j+1]], - vol = cross(v2,v1)*v0 - ) - [ vol, (v0+v1+v2)*vol ] - ]) - ) - assert(!approx(pos[0],0, EPSILON), "The vnf has self-intersections.") - pos[1]/pos[0]/4; - - -// Function: vnf_halfspace() -// Usage: -// newvnf = vnf_halfspace(plane, vnf, [closed]); -// Description: -// Returns the intersection of the vnf with a half space. The half space is defined by -// plane = [A,B,C,D], taking the side where the normal [A,B,C] points: Ax+By+Cz≥D. -// If closed is set to false then the cut face is not included in the vnf. This could -// allow further extension of the vnf by merging with other vnfs. -// Arguments: -// plane = plane defining the boundary of the half space -// vnf = vnf to cut -// closed = if false do not return include cut face(s). Default: true -// Example: -// vnf = cube(10,center=true); -// cutvnf = vnf_halfspace([-1,1,-1,0], vnf); -// vnf_polyhedron(cutvnf); -// Example: Cut face has 2 components -// vnf = path_sweep(circle(r=4, $fn=16), -// circle(r=20, $fn=64),closed=true); -// cutvnf = vnf_halfspace([-1,1,-4,0], vnf); -// vnf_polyhedron(cutvnf); -// Example: Cut face is not simply connected -// vnf = path_sweep(circle(r=4, $fn=16), -// circle(r=20, $fn=64),closed=true); -// cutvnf = vnf_halfspace([0,0.7,-4,0], vnf); -// vnf_polyhedron(cutvnf); -// Example: Cut object has multiple components -// function knot(a,b,t) = // rolling knot -// [ a * cos (3 * t) / (1 - b* sin (2 *t)), -// a * sin( 3 * t) / (1 - b* sin (2 *t)), -// 1.8 * b * cos (2 * t) /(1 - b* sin (2 *t))]; -// a = 0.8; b = sqrt (1 - a * a); -// ksteps = 400; -// knot_path = [for (i=[0:ksteps-1]) 50 * knot(a,b,(i/ksteps)*360)]; -// ushape = [[-10, 0],[-10, 10],[ -7, 10],[ -7, 2],[ 7, 2],[ 7, 7],[ 10, 7],[ 10, 0]]; -// knot=path_sweep(ushape, knot_path, closed=true, method="incremental"); -// cut_knot = vnf_halfspace([1,0,0,0], knot); -// vnf_polyhedron(cut_knot); -function vnf_halfspace(plane, vnf, closed=true) = - let( - inside = [for(x=vnf[0]) plane*[each x,-1] >= 0 ? 1 : 0], - vertexmap = [0,each cumsum(inside)], - faces_edges_vertices = _vnfcut(plane, vnf[0],vertexmap,inside, vnf[1], last(vertexmap)), - newvert = concat(bselect(vnf[0],inside), faces_edges_vertices[2]) - ) - closed==false ? [newvert, faces_edges_vertices[0]] : - let( - allpaths = _assemble_paths(newvert, faces_edges_vertices[1]), - newpaths = [for(p=allpaths) if (len(p)>=3) p - else assert(approx(p[0],p[1]),"Orphan edge found when assembling cut edges.") - ] - ) - len(newpaths)<=1 ? [newvert, concat(faces_edges_vertices[0], newpaths)] - : - let( - faceregion = project_plane(plane, newpaths), - facevnf = region_faces(faceregion,reverse=true) - ) - vnf_merge([[newvert, faces_edges_vertices[0]], lift_plane(plane, facevnf)]); - - -function _assemble_paths(vertices, edges, paths=[],i=0) = - i==len(edges) ? paths : - norm(vertices[edges[i][0]]-vertices[edges[i][1]])3 - ? _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount+1, - concat(newfaces, [list_head(newface)]), newedges,concat(newvertices,[newvert[0]]),i+1) - : - _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount,newfaces, newedges, newvert, i+1); - - - // Function: vnf_slice() // Usage: // sliced = vnf_slice(vnf, dir, cuts); @@ -657,8 +429,8 @@ function _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount, newfaces= // Slice the faces of a VNF along a specified axis direction at a given list // of cut points. You can use this to refine the faces of a VNF before applying // a nonlinear transformation to its vertex set. -// Example: -// include +// Example(3D): +// include // vnf = regular_polyhedron_info("vnf", "dodecahedron", side=12); // vnf_polyhedron(vnf); // sliced = vnf_slice(vnf, "X", [-6,-1,10]); @@ -753,6 +525,240 @@ function _slice_3dpolygons(polys, dir, cuts) = + + +// Section: Turning a VNF into geometry + + +// Module: vnf_polyhedron() +// Usage: +// vnf_polyhedron(vnf); +// vnf_polyhedron([VNF, VNF, VNF, ...]); +// Description: +// Given a VNF structure, or a list of VNF structures, creates a polyhedron from them. +// Arguments: +// vnf = A VNF structure, or list of VNF structures. +// convexity = Max number of times a line could intersect a wall of the shape. +// extent = If true, calculate anchors by extents, rather than intersection. Default: true. +// cp = Centerpoint of VNF to use for anchoring when `extent` is false. Default: `[0, 0, 0]` +// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `"origin"` +// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` +// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` +module vnf_polyhedron(vnf, convexity=2, extent=true, cp=[0,0,0], anchor="origin", spin=0, orient=UP) { + vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf; + cp = is_def(cp) ? cp : vnf_centroid(vnf); + attachable(anchor,spin,orient, vnf=vnf, extent=extent, cp=cp) { + polyhedron(vnf[0], vnf[1], convexity=convexity); + children(); + } +} + + +// Module: vnf_wireframe() +// Usage: +// vnf_wireframe(vnf, ); +// Description: +// Given a VNF, creates a wire frame ball-and-stick model of the polyhedron with a cylinder for +// each edge and a sphere at each vertex. The width parameter specifies the width of the sticks +// that form the wire frame. +// Arguments: +// vnf = A vnf structure +// width = width of the cylinders forming the wire frame. Default: 1 +// Example: +// $fn=32; +// ball = sphere(r=20, $fn=6); +// vnf_wireframe(ball,width=1); +// Example: +// include +// $fn=32; +// cube_oct = regular_polyhedron_info("vnf", +// name="cuboctahedron", or=20); +// vnf_wireframe(cube_oct); +// Example: The spheres at the vertex are imperfect at aligning with the cylinders, so especially at low $fn things look prety ugly. This is normal. +// include +// $fn=8; +// octahedron = regular_polyhedron_info("vnf", +// name="octahedron", or=20); +// vnf_wireframe(octahedron,width=5); +module vnf_wireframe(vnf, width=1) +{ + vertex = vnf[0]; + edges = unique([for (face=vnf[1], i=idx(face)) + sort([face[i], select(face,i+1)]) + ]); + for (e=edges) extrude_from_to(vertex[e[0]],vertex[e[1]]) circle(d=width); + move_copies(vertex) sphere(d=width); +} + + +// Section: Operations on VNFs + +// Function: vnf_volume() +// Usage: +// vol = vnf_volume(vnf); +// Description: +// Returns the volume enclosed by the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and +// no holes; otherwise the results are undefined. Returns a positive volume if face direction is clockwise and a negative volume +// if face direction is counter-clockwise. + +// Divide the polyhedron into tetrahedra with the origin as one vertex and sum up the signed volume. +function vnf_volume(vnf) = + let(verts = vnf[0]) + sum([ + for(face=vnf[1], j=[1:1:len(face)-2]) + cross(verts[face[j+1]], verts[face[j]]) * verts[face[0]] + ])/6; + + +// Function: vnf_area() +// Usage: +// area = vnf_area(vnf); +// Description: +// Returns the surface area in any VNF by adding up the area of all its faces. The VNF need not be a manifold. +function vnf_area(vnf) = + let(verts=vnf[0]) + sum([for(face=vnf[1]) polygon_area(select(verts,face))]); + + +// Function: vnf_centroid() +// Usage: +// vol = vnf_centroid(vnf); +// Description: +// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and +// no holes; otherwise the results are undefined. + +// Divide the solid up into tetrahedra with the origin as one vertex. +// The centroid of a tetrahedron is the average of its vertices. +// The centroid of the total is the volume weighted average. +function vnf_centroid(vnf) = + assert(is_vnf(vnf) && len(vnf[0])!=0 ) + let( + verts = vnf[0], + pos = sum([ + for(face=vnf[1], j=[1:1:len(face)-2]) let( + v0 = verts[face[0]], + v1 = verts[face[j]], + v2 = verts[face[j+1]], + vol = cross(v2,v1)*v0 + ) + [ vol, (v0+v1+v2)*vol ] + ]) + ) + assert(!approx(pos[0],0, EPSILON), "The vnf has self-intersections.") + pos[1]/pos[0]/4; + + +// Function: vnf_halfspace() +// Usage: +// newvnf = vnf_halfspace(plane, vnf, [closed]); +// Description: +// Returns the intersection of the vnf with a half space. The half space is defined by +// plane = [A,B,C,D], taking the side where the normal [A,B,C] points: Ax+By+Cz≥D. +// If closed is set to false then the cut face is not included in the vnf. This could +// allow further extension of the vnf by merging with other vnfs. +// Arguments: +// plane = plane defining the boundary of the half space +// vnf = vnf to cut +// closed = if false do not return include cut face(s). Default: true +// Example(3D): +// vnf = cube(10,center=true); +// cutvnf = vnf_halfspace([-1,1,-1,0], vnf); +// vnf_polyhedron(cutvnf); +// Example(3D): Cut face has 2 components +// vnf = path_sweep(circle(r=4, $fn=16), +// circle(r=20, $fn=64),closed=true); +// cutvnf = vnf_halfspace([-1,1,-4,0], vnf); +// vnf_polyhedron(cutvnf); +// Example(3D): Cut face is not simply connected +// vnf = path_sweep(circle(r=4, $fn=16), +// circle(r=20, $fn=64),closed=true); +// cutvnf = vnf_halfspace([0,0.7,-4,0], vnf); +// vnf_polyhedron(cutvnf); +// Example(3D): Cut object has multiple components +// function knot(a,b,t) = // rolling knot +// [ a * cos (3 * t) / (1 - b* sin (2 *t)), +// a * sin( 3 * t) / (1 - b* sin (2 *t)), +// 1.8 * b * cos (2 * t) /(1 - b* sin (2 *t))]; +// a = 0.8; b = sqrt (1 - a * a); +// ksteps = 400; +// knot_path = [for (i=[0:ksteps-1]) 50 * knot(a,b,(i/ksteps)*360)]; +// ushape = [[-10, 0],[-10, 10],[ -7, 10],[ -7, 2],[ 7, 2],[ 7, 7],[ 10, 7],[ 10, 0]]; +// knot=path_sweep(ushape, knot_path, closed=true, method="incremental"); +// cut_knot = vnf_halfspace([1,0,0,0], knot); +// vnf_polyhedron(cut_knot); +function vnf_halfspace(plane, vnf, closed=true) = + let( + inside = [for(x=vnf[0]) plane*[each x,-1] >= 0 ? 1 : 0], + vertexmap = [0,each cumsum(inside)], + faces_edges_vertices = _vnfcut(plane, vnf[0],vertexmap,inside, vnf[1], last(vertexmap)), + newvert = concat(bselect(vnf[0],inside), faces_edges_vertices[2]) + ) + closed==false ? [newvert, faces_edges_vertices[0]] : + let( + allpaths = _assemble_paths(newvert, faces_edges_vertices[1]), + newpaths = [for(p=allpaths) if (len(p)>=3) p + else assert(approx(p[0],p[1]),"Orphan edge found when assembling cut edges.") + ] + ) + len(newpaths)<=1 ? [newvert, concat(faces_edges_vertices[0], newpaths)] + : + let( + M = project_plane(plane), + faceregion = [for(path=newpaths) path2d(apply(M,select(newvert,path)))], + facevnf = region_faces(faceregion,transform=rot_inverse(M),reverse=true) + ) + vnf_merge([[newvert, faces_edges_vertices[0]], facevnf]); + + +function _assemble_paths(vertices, edges, paths=[],i=0) = + i==len(edges) ? paths : + norm(vertices[edges[i][0]]-vertices[edges[i][1]])3 + ? _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount+1, + concat(newfaces, [list_head(newface)]), newedges,concat(newvertices,[newvert[0]]),i+1) + : + _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount,newfaces, newedges, newvert, i+1); + + + + function _triangulate_planar_convex_polygons(polys) = polys==[]? [] : let( @@ -809,7 +815,8 @@ function _triangulate_planar_convex_polygons(polys) = // bent2 = vnf_bend(vnf2, axis="Y"); // vnf_polyhedron([bent1,bent2]); // Example(3D): -// rgn = union(rect([100,20],center=true), rect([20,100],center=true)); +// rgn = union(rect([100,20],center=true), +// rect([20,100],center=true)); // vnf0 = linear_sweep(zrot(45,p=rgn), height=10); // vnf1 = up(50, p=vnf0); // vnf2 = down(50, p=vnf0); @@ -885,26 +892,24 @@ function vnf_bend(vnf,r,d,axis="Z") = ) [new_vert,sliced[1]]; - - // Section: Debugging Polyhedrons -// Module: _show_vertices() -// Usage: -// _show_vertices(vertices, [size]) -// Description: -// Draws all the vertices in an array, at their 3D position, numbered by their -// position in the vertex array. Also draws any children of this module with -// transparency. -// Arguments: -// vertices = Array of point vertices. -// size = The size of the text used to label the vertices. Default: 1 -// Example: -// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]]; -// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]]; -// _show_vertices(vertices=verts, size=2) { -// polyhedron(points=verts, faces=faces); -// } +/// Internal Module: _show_vertices() +/// Usage: +/// _show_vertices(vertices, [size]) +/// Description: +/// Draws all the vertices in an array, at their 3D position, numbered by their +/// position in the vertex array. Also draws any children of this module with +/// transparency. +/// Arguments: +/// vertices = Array of point vertices. +/// size = The size of the text used to label the vertices. Default: 1 +/// Example: +/// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]]; +/// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]]; +/// _show_vertices(vertices=verts, size=2) { +/// polyhedron(points=verts, faces=faces); +/// } module _show_vertices(vertices, size=1) { color("blue") { dups = vector_search(vertices, EPSILON, vertices); @@ -924,7 +929,7 @@ module _show_vertices(vertices, size=1) { } -/// Module: _show_faces() +/// Internal Module: _show_faces() /// Usage: /// _show_faces(vertices, faces, [size=]); /// Description: