mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Added tri_calc()
This commit is contained in:
parent
ad59d88ce2
commit
d1abaf891d
1 changed files with 68 additions and 3 deletions
|
@ -252,6 +252,69 @@ function find_circle_3points(pt1, pt2, pt3) =
|
|||
|
||||
|
||||
|
||||
// Function: tri_calc()
|
||||
// Usage:
|
||||
// tri_calc(ang,ang2,adj,opp,hyp);
|
||||
// Description:
|
||||
// Given a side length and an angle, or two side lengths, calculates the rest of the side lengths
|
||||
// and angles of a right triangle. Returns [ADJACENT, OPPOSITE, HYPOTENUSE, ANGLE, ANGLE2] where
|
||||
// ADJACENT is the length of the side adjacent to ANGLE, and OPPOSITE is the length of the side
|
||||
// opposite of ANGLE and adjacent to ANGLE2. ANGLE and ANGLE2 are measured in degrees.
|
||||
// This is certainly more verbose and slower than writing your own calculations, but has the nice
|
||||
// benefit that you can just specify the info you have, and don't have to figure out which trig
|
||||
// formulas you need to use.
|
||||
// Figure(2D):
|
||||
// color("#ccc") {
|
||||
// stroke(closed=false, width=0.5, [[45,0], [45,5], [50,5]]);
|
||||
// stroke(closed=false, width=0.5, arc(N=6, r=15, cp=[0,0], start=0, angle=30));
|
||||
// stroke(closed=false, width=0.5, arc(N=6, r=14, cp=[50,30], start=212, angle=58));
|
||||
// }
|
||||
// color("black") stroke(closed=true, [[0,0], [50,30], [50,0]]);
|
||||
// color("#0c0") {
|
||||
// translate([10.5,2.5]) text(size=3,text="ang",halign="center",valign="center");
|
||||
// translate([44.5,22]) text(size=3,text="ang2",halign="center",valign="center");
|
||||
// }
|
||||
// color("blue") {
|
||||
// translate([25,-3]) text(size=3,text="Adjacent",halign="center",valign="center");
|
||||
// translate([53,15]) rotate(-90) text(size=3,text="Opposite",halign="center",valign="center");
|
||||
// translate([25,18]) rotate(30) text(size=3,text="Hypotenuse",halign="center",valign="center");
|
||||
// }
|
||||
// Arguments:
|
||||
// ang = The angle in degrees of the primary corner of the triangle.
|
||||
// ang2 = The angle in degrees of the other non-right corner of the triangle.
|
||||
// adj = The length of the side adjacent to the primary corner.
|
||||
// opp = The length of the side opposite to the primary corner.
|
||||
// hyp = The length of the hypotenuse.
|
||||
// Example:
|
||||
// tri = tri_calc(opp=15,hyp=30);
|
||||
// echo(adjacent=tri[0], opposite=tri[1], hypotenuse=tri[2], angle=tri[3], angle2=tri[4]);
|
||||
// Examples:
|
||||
// adj = tri_calc(ang=30,opp=10)[0];
|
||||
// opp = tri_calc(ang=20,hyp=30)[1];
|
||||
// hyp = tri_calc(ang2=50,adj=20)[2];
|
||||
// ang = tri_calc(adj=20,hyp=30)[3];
|
||||
// ang2 = tri_calc(adj=20,hyp=40)[4];
|
||||
function tri_calc(ang,ang2,adj,opp,hyp) =
|
||||
assert(num_defined([ang,ang2])<2,"You cannot specify both ang and ang2.")
|
||||
assert(num_defined([ang,ang2,adj,opp,hyp])==2, "You must specify exactly two arguments.")
|
||||
let(
|
||||
ang = ang!=undef? assert(ang>0&&ang<90) ang :
|
||||
ang2!=undef? (90-ang2) :
|
||||
adj==undef? asin(constrain(opp/hyp,-1,1)) :
|
||||
opp==undef? acos(constrain(adj/hyp,-1,1)) :
|
||||
atan2(opp,adj),
|
||||
ang2 = ang2!=undef? assert(ang2>0&&ang2<90) ang2 : (90-ang),
|
||||
adj = adj!=undef? assert(adj>0) adj :
|
||||
(opp!=undef? (opp/tan(ang)) : (hyp*cos(ang))),
|
||||
opp = opp!=undef? assert(opp>0) opp :
|
||||
(adj!=undef? (adj*tan(ang)) : (hyp*sin(ang))),
|
||||
hyp = hyp!=undef? assert(hyp>0) assert(adj<hyp) assert(opp<hyp) hyp :
|
||||
(adj!=undef? (adj/cos(ang)) : (opp/sin(ang)))
|
||||
)
|
||||
[adj, opp, hyp, ang, ang2];
|
||||
|
||||
|
||||
|
||||
// Function: triangle_area()
|
||||
// Usage:
|
||||
// triangle_area(a,b,c);
|
||||
|
@ -437,9 +500,11 @@ function polygon_area(vertices) =
|
|||
// Given a simple polygon, returns the coordinates of the polygon's centroid.
|
||||
// If the polygon is self-intersecting, the results are undefined.
|
||||
function centroid(vertices) =
|
||||
sum([for(i=[0:len(vertices)-1])
|
||||
sum([
|
||||
for(i=[0:len(vertices)-1])
|
||||
let(segment=select(vertices,i,i+1))
|
||||
det2(segment)*sum(segment)]) / 6 / polygon_area(vertices);
|
||||
det2(segment)*sum(segment)
|
||||
]) / 6 / polygon_area(vertices);
|
||||
|
||||
|
||||
// Function: assemble_path_fragments()
|
||||
|
|
Loading…
Reference in a new issue