mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-17 01:49:48 +00:00
Added patch_reverse()
This commit is contained in:
parent
282207701a
commit
d238236c59
1 changed files with 24 additions and 13 deletions
37
beziers.scad
37
beziers.scad
|
@ -226,7 +226,7 @@ function bezier_patch_point(patch, u, v) = bez_point([for (bez = patch) bez_poin
|
||||||
|
|
||||||
// Function: bezier_triangle_point()
|
// Function: bezier_triangle_point()
|
||||||
// Usage:
|
// Usage:
|
||||||
// bezier_triangle_point(patch, u, v)
|
// bezier_triangle_point(tri, u, v)
|
||||||
// Description:
|
// Description:
|
||||||
// Given a triangular 2-dimensional array of N+1 by (for the first row) N+1 points,
|
// Given a triangular 2-dimensional array of N+1 by (for the first row) N+1 points,
|
||||||
// that represents a Bezier triangular patch of degree N, returns a point on
|
// that represents a Bezier triangular patch of degree N, returns a point on
|
||||||
|
@ -234,16 +234,16 @@ function bezier_patch_point(patch, u, v) = bez_point([for (bez = patch) bez_poin
|
||||||
// will have a list of 4 points in the first row, 3 in the second, 2 in the
|
// will have a list of 4 points in the first row, 3 in the second, 2 in the
|
||||||
// third, and 1 in the last row.
|
// third, and 1 in the last row.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// patch = Triangular bezier patch to get point on.
|
// tri = Triangular bezier patch to get point on.
|
||||||
// u = The proportion of the way along the first dimension of the triangular patch to find the point of. 0<=`u`<=1
|
// u = The proportion of the way along the first dimension of the triangular patch to find the point of. 0<=`u`<=1
|
||||||
// v = The proportion of the way along the second dimension of the triangular patch to find the point of. 0<=`v`<=(1-`u`)
|
// v = The proportion of the way along the second dimension of the triangular patch to find the point of. 0<=`v`<=(1-`u`)
|
||||||
function bezier_triangle_point(patch, u, v) =
|
function bezier_triangle_point(tri, u, v) =
|
||||||
len(patch) == 1 ? patch[0][0] :
|
len(tri) == 1 ? tri[0][0] :
|
||||||
let(
|
let(
|
||||||
n = len(patch)-1,
|
n = len(tri)-1,
|
||||||
Pu = [for(i=[0:n-1]) [for (j=[1:len(patch[i])-1]) patch[i][j]]],
|
Pu = [for(i=[0:n-1]) [for (j=[1:len(tri[i])-1]) tri[i][j]]],
|
||||||
Pv = [for(i=[0:n-1]) [for (j=[0:len(patch[i])-2]) patch[i][j]]],
|
Pv = [for(i=[0:n-1]) [for (j=[0:len(tri[i])-2]) tri[i][j]]],
|
||||||
Pw = [for(i=[1:len(patch)-1]) patch[i]]
|
Pw = [for(i=[1:len(tri)-1]) tri[i]]
|
||||||
)
|
)
|
||||||
bezier_triangle_point(u*Pu + v*Pv + (1-u-v)*Pw, u, v);
|
bezier_triangle_point(u*Pu + v*Pv + (1-u-v)*Pw, u, v);
|
||||||
|
|
||||||
|
@ -296,7 +296,7 @@ function _tri_count(n) = (n*(1+n))/2;
|
||||||
|
|
||||||
// Function: bezier_triangle()
|
// Function: bezier_triangle()
|
||||||
// Usage:
|
// Usage:
|
||||||
// bezier_triangle(patch, [splinesteps], [vertices], [faces]);
|
// bezier_triangle(tri, [splinesteps], [vertices], [faces]);
|
||||||
// Description:
|
// Description:
|
||||||
// Calculate vertices and faces for forming a partial polyhedron
|
// Calculate vertices and faces for forming a partial polyhedron
|
||||||
// from the given bezier triangular patch. Returns a list containing
|
// from the given bezier triangular patch. Returns a list containing
|
||||||
|
@ -306,7 +306,7 @@ function _tri_count(n) = (n*(1+n))/2;
|
||||||
// more vertices and faces for multiple bezier patches, to stitch
|
// more vertices and faces for multiple bezier patches, to stitch
|
||||||
// them together into a complete polyhedron.
|
// them together into a complete polyhedron.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// patch = The triangular array of endpoints and control points for this bezier patch.
|
// tri = The triangular array of endpoints and control points for this bezier patch.
|
||||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||||
// vertices = Vertex list to add new points to. Default: []
|
// vertices = Vertex list to add new points to. Default: []
|
||||||
// faces = Face list to add new faces to. Default: []
|
// faces = Face list to add new faces to. Default: []
|
||||||
|
@ -318,17 +318,17 @@ function _tri_count(n) = (n*(1+n))/2;
|
||||||
// ];
|
// ];
|
||||||
// vnf = bezier_triangle(tri, splinesteps=16);
|
// vnf = bezier_triangle(tri, splinesteps=16);
|
||||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||||
function bezier_triangle(patch, splinesteps=16, vertices=[], faces=[]) =
|
function bezier_triangle(tri, splinesteps=16, vertices=[], faces=[]) =
|
||||||
let(
|
let(
|
||||||
base = len(vertices),
|
base = len(vertices),
|
||||||
pts = [
|
pts = [
|
||||||
for (
|
for (
|
||||||
u=[0:splinesteps],
|
u=[0:splinesteps],
|
||||||
v=[0:splinesteps-u]
|
v=[0:splinesteps-u]
|
||||||
) bezier_triangle_point(patch, u/splinesteps, v/splinesteps)
|
) bezier_triangle_point(tri, u/splinesteps, v/splinesteps)
|
||||||
],
|
],
|
||||||
new_vertices = concat(vertices, pts),
|
new_vertices = concat(vertices, pts),
|
||||||
patchlen = len(patch),
|
patchlen = len(tri),
|
||||||
tricnt = _tri_count(splinesteps+1),
|
tricnt = _tri_count(splinesteps+1),
|
||||||
new_faces = [
|
new_faces = [
|
||||||
for (
|
for (
|
||||||
|
@ -370,6 +370,17 @@ function bezier_patch_flat(size=[100,100], N=4, orient=ORIENT_Z, trans=[0,0,0])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// Function: patch_reverse()
|
||||||
|
// Usage:
|
||||||
|
// patch_reverse(patch)
|
||||||
|
// Description:
|
||||||
|
// Reverses the patch, so that the faces generated from it are flipped back to front.
|
||||||
|
// Arguments:
|
||||||
|
// patch = The patch to reverse.
|
||||||
|
function patch_reverse(patch) = [for (row=patch) reverse(row)];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: patch_translate()
|
// Function: patch_translate()
|
||||||
// Usage:
|
// Usage:
|
||||||
// patch_translate(patch, v)
|
// patch_translate(patch, v)
|
||||||
|
|
Loading…
Reference in a new issue