half_of() coded as a function for points, paths and regions; VNFs still TODO

This commit is contained in:
Jerome Plut 2020-12-03 01:01:39 +01:00
parent 0df1308e4e
commit d47fbef5a7

View file

@ -64,13 +64,20 @@ module bounding_box(excess=0) {
} }
// Module: half_of() // Function&Module: half_of()
// //
// Usage: // Usage: as module
// half_of(v, [cp], [s]) ... // half_of(v, [cp], [s]) ...
// Usage: as function
// half_of(v, [cp], p, [s])...
// //
// Description: // Description:
// Slices an object at a cut plane, and masks away everything that is on one side. // Slices an object at a cut plane, and masks away everything that is on one side.
// * Called as a function with a path in the `p` argument, returns the
// intersection of path `p` and given half-space.
// * Called as a function with a 2D path in the `p` argument
// and a 2D vector `p`, returns the intersection of path `p` and given
// half-plane.
// //
// Arguments: // Arguments:
// v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP) // v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP)
@ -111,6 +118,54 @@ module half_of(v=UP, cp, s=1000, planar=false)
} }
} }
function half_of(v, arg1, arg2, cp, p, s=1e4) =
/* may be called as either:
* p= cp=
* 1. (v, p) arg1 0
* 2. (v, p=p) p 0
* 3. (v, cp, p) arg2 arg1
* 4. (v, cp=cp, p) arg1 p
* 5. (v, cp, p=p) p arg1
* 6. (v, cp=cp, p=p)p cp
*/
/* FIXME: add tests for the various argument naming schemes */
let(p_=p, cp_=cp, // keep names p and cp clean
p = !is_undef(p_) ? p_ : // cases 2.5.6.
!is_undef(arg2) ? arg2 : arg1, // cases 3., 1.4.
cp0=!is_undef(cp_) ? cp_ : // cases 4.6.
is_undef(arg1) ? 0*v : // case 2.
!is_undef(arg2) ? arg1 : // case 3.
is_undef(p_) ? 0*v : arg1, // cases 1., 5.
cp = is_num(cp0) ? cp0*unit(v) : cp0)
assert(is_vector(v,2)||is_vector(v,3),
"must provide a half-plane or half-space")
let(d=len(v))
assert(len(cp) == d, str("cp must have dimension ", d))
is_vector(p) ?
assert(len(p) == d, str("vector must have dimension ", d))
let(z=(p-cp)*v) (z >= 0 ? p : p - (z*v)/(v*v))
:
p == [] ? [] : // special case: empty path remains empty
is_path(p) ?
assert(len(p[0]) == d, str("path must have dimension ", d))
let(z = [for(x=p) (x-cp)*v])
[ for(i=[0:len(p)-1]) each concat(z[i] >= 0 ? [p[i]] : [],
// we assume a closed path here;
// to make this correct for an open path,
// just replace this by [] when i==len(p)-1:
let(j=(i+1)%len(p))
// the remaining path may have flattened sections, but this cannot
// create self-intersection or whiskers:
z[i]*z[j] >= 0 ? [] : [(z[j]*p[i]-z[i]*p[j])/(z[j]-z[i])]) ]
:
assert(is_region(p), str("must provide point, path or region"))
assert(len(v) == 2, str("3D vector not compatible with region"))
let(u=unit(v), w=[-u[1], u[0]],
R=[[cp+s*w, cp+s*(v+v), cp+s*(v-w), cp-s*w]]) // bounding region
intersection(R, p);
// FIXME: find something intelligent to do if p is a VNF
// FIXME: scadlib csg.scad, csg_hspace()
// Module: left_half() // Module: left_half()
// //