fix rounded prism docs

This commit is contained in:
Adrian Mariano 2024-12-05 22:47:08 -05:00
parent 0769835a09
commit d4a8fdb6fe
3 changed files with 31 additions and 52 deletions

View file

@ -5005,7 +5005,9 @@ function _canonical_edge(edge) =
// See Also: restore()
// Synopsis: Returns a description (transformation state and attachment geometry) of the parent
// Usage:
// let( desc = parent() ) CHILDREN;
// PARENT() let( desc = parent() ) CHILDREN;
// Usage: in development releases only
// PARENT() { desc=parent(); CHILDREN; }
// Description:
// Returns a description of the closest attachable ancestor in the geometry tree, along with the current transformation. You can use this
// description to create new objects based on the described object or perform computations based on the described object. You can also use it to
@ -5097,6 +5099,9 @@ function desc_point(desc, anchor=CENTER) =
// Usage:
// dist = desc_dist(desc1,anchor1,desc2,anchor2);
// dest = desc_dist(desc1=, desc2=, [anchor1=], [anchor2=]);
// Description:
// Computes the distance between two points specified using attachable descriptions and optional anchor
// points. If you omit the anchor point(s) then the computation uses the CENTER anchor.
// Example: Computes the distance between a point on each cube.
// cuboid(10) let(desc=parent())
// right(15) cuboid(10)

View file

@ -242,7 +242,7 @@ function nurbs_curve(control,degree,splinesteps,u, mult,weights,type="clamped",
type=="open" ? assert(len(xknots)==len(control)+degree+1, str("For open spline, knot vector with multiplicity must have length ",
len(control)+degree+1," but has length ", len(xknots)))
xknots
: type=="clamped" ? assert(len(xknots) == len(control)+1-degree, str("For clamped spline, knot vector with multiplicity must have length ",
: type=="clamped" ? assert(len(xknots) == len(control)+1-degree, str("For clamped spline of degree ",degree,", knot vector with multiplicity must have length ",
len(control)+1-degree," but has length ", len(xknots)))
assert(xknots[0]!=xknots[1] && last(xknots)!=select(xknots,-2),
"For clamped splint, first and last knots cannot repeat (must have multiplicity one")

View file

@ -1378,10 +1378,10 @@ module offset_stroke(path, width=1, rounded=true, start, end, check_valid=true,
// atype = Select "hull", "intersect", "surf_hull" or "surf_intersect" anchor types. Default: "hull"
// cp = Centerpoint for determining "intersect" anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid"
// Anchor Types:
// hull = Anchors to the convex hull of the linear sweep of the path, ignoring any end roundings. (default)
// intersect = Anchors to the surface of the linear sweep of the path, ignoring any end roundings.
// surf_hull = Anchors to the convex hull of the offset_sweep shape, including end treatments.
// surf_intersect = Anchors to the surface of the offset_sweep shape, including any end treatments.
// "hull" = Anchors to the convex hull of the linear sweep of the path, ignoring any end roundings. (default)
// "intersect" = Anchors to the surface of the linear sweep of the path, ignoring any end roundings.
// "surf_hull" = Anchors to the convex hull of the offset_sweep shape, including end treatments.
// "surf_intersect" = Anchors to the surface of the offset_sweep shape, including any end treatments.
// Named Anchors:
// "base" = Anchor to the base of the shape in its native position, ignoring any "extra"
// "top" = Anchor to the top of the shape in its native position, ignoring any "extra"
@ -2120,13 +2120,11 @@ function _rp_compute_patches(top, bot, rtop, rsides, ktop, ksides, concave) =
// "top_corner0", "top_corner1", etc = Top corner, pointing in direction of associated edge anchor, spin up along associated edge
// "bot_corner0", "bot_corner1", etc = Bottom corner, pointing in direction of associated edge anchor, spin up along associated edge
// Anchor Types:
// hull = Anchors to the convex hull of the linear sweep of the path, ignoring any end roundings. (default)
// intersect = Anchors to the surface of the linear sweep of the path, ignoring any end roundings.
// surf_hull = Anchors to the convex hull of the offset_sweep shape, including end treatments.
// surf_intersect = Anchors to the surface of the offset_sweep shape, including any end treatments.
// "hull" = Anchors to the virtual convex hull of the prism.
// "intersect" = Anchors to the surface of the prism.
// "hull" = Anchors to the VNF of the **unrounded** prism using VNF hull anchors (default)
// "intersect" = Anchors to the VNF of the **unrounded** prism using VNF intersection anchors (default)
// "surf_hull" = Use VNF hull anchors to the rounded VNF
// "surf_intersect" = USe VFN intersection anchors to the rounded VNF
// "prismoid" = For four sided prisms only, defined standard prismsoid anchors, with RIGHT set to the face closest to the RIGHT direction.
// Example: Uniformly rounded pentagonal prism
// rounded_prism(pentagon(3), height=3,
// joint_top=0.5, joint_bot=0.5, joint_sides=0.5);
@ -3384,7 +3382,7 @@ module join_prism(polygon, base, base_r, base_d, base_T=IDENT,
overlap, base_overlap,aux_overlap,
n=15, base_n, end_n, aux_n,
fillet, base_fillet,aux_fillet,end_round,
k=0.7, base_k,aux_k,end_k,
k=0.7, base_k,aux_k,end_k,start,end,
uniform=true, base_uniform, aux_uniform,
debug=false, anchor="origin", extent=true, cp="centroid", atype="hull", orient=UP, spin=0,
convexity=10)
@ -3399,7 +3397,7 @@ module join_prism(polygon, base, base_r, base_d, base_T=IDENT,
fillet=fillet, base_fillet=base_fillet, aux_fillet=aux_fillet, end_round=end_round,
k=k, base_k=base_k, aux_k=aux_k, end_k=end_k,
uniform=uniform, base_uniform=base_uniform, aux_uniform=aux_uniform,
debug=debug,
debug=debug, start=start, end=end,
return_axis=true
);
axis = vnf_start_end[2] - vnf_start_end[1];
@ -3424,7 +3422,7 @@ function join_prism(polygon, base, base_r, base_d, base_T=IDENT,
fillet, base_fillet,aux_fillet,end_round,
k=0.7, base_k,aux_k,end_k,
uniform=true, base_uniform, aux_uniform,
debug=false, return_axis=false) =
debug=false, return_axis=false, start, end) =
let(
objects=["cyl","cylinder","plane","sphere"],
length = one_defined([h,height,l,length], "h,height,l,length", dflt=undef)
@ -3442,6 +3440,7 @@ function join_prism(polygon, base, base_r, base_d, base_T=IDENT,
assert(is_num(scale) && scale>=0, "Prism scale must be non-negative")
assert(num_defined([end_k,aux_k])<2, "Cannot define both end_k and aux_k")
assert(num_defined([end_n,aux_n])<2, "Cannot define both end_n and aux_n")
assert(prism_end_T==IDENT || num_defined([start,end])==0, "Cannot give prism_end_T with either start or end")
let(
base_r = get_radius(r=base_r,d=base_d),
aux_r = get_radius(r=aux_r,d=aux_d),
@ -3469,31 +3468,33 @@ function join_prism(polygon, base, base_r, base_d, base_T=IDENT,
polygon=clockwise_polygon(polygon),
start_center = CENTER,
aux_T_horiz = submatrix(aux_T,[0:2],[0:2]) == ident(3) && aux_T[2][3]==0,
dir = aux=="none" ? apply(aux_T,UP)
dir = num_defined([start,end])==2 ? end-start
: aux=="none" ? apply(aux_T,UP)
: aux_T_horiz && in_list([base,aux], [["sphere","sphere"], ["cyl","cylinder"],["cylinder","cyl"], ["cyl","cyl"], ["cylinder", "cylinder"]]) ?
unit(apply(aux_T, aux_r*UP))
: apply(aux_T,CENTER)==CENTER ? apply(aux_T,UP)
: apply(aux_T,CENTER),
flip = short ? -1 : 1,
axisline = [CENTER, flip*dir] + repeat(default(start,CENTER),2),
start = base=="sphere" ?
let( answer = _sphere_line_isect_best(abs(base_r),[CENTER,flip*dir], sign(base_r)*flip*dir))
let( answer = _sphere_line_isect_best(abs(base_r),axisline, sign(base_r)*flip*dir))
assert(answer,"Prism center doesn't intersect sphere (base)")
answer
: base=="cyl" || base=="cylinder" ?
assert(dir.y!=0 || dir.z!=0, "Prism direction parallel to the cylinder")
let(
mapped = apply(yrot(90),[CENTER,flip*dir]),
mapped = apply(yrot(90),axisline),
answer = _cyl_line_intersection(abs(base_r),mapped,sign(base_r)*mapped[1])
)
assert(answer,"Prism center doesn't intersect cylinder (base)")
apply(yrot(-90),answer)
: is_path(base) ?
let(
mapped = apply(yrot(90),[CENTER,flip*dir]),
mapped = apply(yrot(-90),axisline),
answer = _prism_line_isect(pair(base,wrap=true),mapped,mapped[1])[0]
)
assert(answer,"Prism center doesn't intersect prism (base)")
apply(yrot(-90),answer)
apply(yrot(90),answer)
: start_center,
aux_T = aux=="none" ? move(start)*prism_end_T*move(-start)*move(length*dir)*move(start)
: aux_T,
@ -3501,7 +3502,8 @@ function join_prism(polygon, base, base_r, base_d, base_T=IDENT,
aux = aux=="none" && aux_fillet!=0 ? "plane" : aux,
end_center = apply(aux_T,CENTER),
ndir = base_r<0 ? unit(start_center-start) : unit(end_center-start_center,UP),
end_prelim = apply(move(start)*prism_end_T*move(-start),
end_prelim = is_def(end) ? end
:apply(move(start)*prism_end_T*move(-start),
aux=="sphere" ?
let( answer = _sphere_line_isect_best(abs(aux_r), [start,start+ndir], -sign(aux_r)*ndir))
assert(answer,"Prism center doesn't intersect sphere (aux)")
@ -3608,6 +3610,7 @@ function _sphere_line_isect_best(R, line, ref) =
// point, ind ind and u are the segment index and u value. Prism is z-aligned.
function _prism_line_isect(poly_pairs, line, ref) =
let(
line2d = path2d(line),
ref=point2d(ref),
ilist = [for(j=idx(poly_pairs))
@ -3621,7 +3624,7 @@ function _prism_line_isect(poly_pairs, line, ref) =
isect2d = ilist[ind][0],
isect_ind = ilist[ind][1],
isect_u = ilist[ind][2],
slope = (line[1].z-line[0].z)/norm(line[1]-line[0]),
slope = (line[1].z-line[0].z)/norm(line2d[1]-line2d[0]),
z = slope * norm(line2d[0]-isect2d) + line[0].z
)
[point3d(isect2d,z),isect_ind, isect_u];
@ -3635,35 +3638,6 @@ function _prism_fillet(name, base, R, bot, top, d, k, N, overlap,uniform,debug)
: is_path(base,2) ? _prism_fillet_prism(name, base, bot, top, d, k, N, overlap,uniform,debug)
: assert(false,"Unknown base type");
function _prism_fillet_plane(name, bot, top, d, k, N, overlap,debug) =
let(
dir = sign(top[0].z-bot[0].z),
isect = [for (i=idx(top)) plane_line_intersection([0,0,1,0], [top[i],bot[i]])],
base_normal = -path3d(path_normals(path2d(isect), closed=true)),
mesh = transpose([for(i=idx(top))
let(
base_angle = vector_angle(top[i],isect[i],isect[i]+sign(d)*base_normal[i]),
// joint length
// d = r,
r=abs(d)*tan(base_angle/2),
// radius
//d = r/tan(base_angle/2),
// cut
//r = r / (1/sin(base_angle/2) - 1),
//d = r/tan(base_angle/2),
prev = unit(top[i]-isect[i]),
next = sign(d)*dir*base_normal[i],
center = r/sin(base_angle/2) * unit(prev+next) + isect[i]
)
[
each arc(N, cp=center, points = [isect[i]+prev*abs(d), isect[i]+next*d]),
isect[i]+next*d+[0,0,-overlap*dir]
]
])
)
assert(debug || is_path_simple(path2d(select(mesh,-2)),closed=true),"Fillet doesn't fit: it intersects itself")
mesh;
function _prism_fillet_plane(name, bot, top, d, k, N, overlap,debug) =
let(