VNF interface update skin.scad and shapes2d.scad

This commit is contained in:
Adrian Mariano 2021-11-16 18:49:37 -05:00
parent 7dfb99c5bb
commit d576526b60
4 changed files with 128 additions and 88 deletions

View file

@ -29,6 +29,8 @@ $parent_geom = undef;
$tags_shown = []; $tags_shown = [];
$tags_hidden = []; $tags_hidden = [];
_ANCHOR_TYPES = ["intersect","hull"];
// Section: Anchors, Spin, and Orientation // Section: Anchors, Spin, and Orientation
// This library adds the concept of anchoring, spin and orientation to the `cube()`, `cylinder()` // This library adds the concept of anchoring, spin and orientation to the `cube()`, `cylinder()`
@ -1885,7 +1887,7 @@ module show_anchors(s=10, std=true, custom=true) {
anchor_arrow(s, color="cyan"); anchor_arrow(s, color="cyan");
} }
color("black") color("black")
// tags("anchor-arrow") tags("anchor-arrow")
{ {
xrot(two_d? 0 : 90) { xrot(two_d? 0 : 90) {
back(s/3) { back(s/3) {

View file

@ -244,15 +244,20 @@ module circle(r, d, anchor=CENTER, spin=0) {
// ellipse(d=50, anchor=FRONT, spin=45); // ellipse(d=50, anchor=FRONT, spin=45);
// Example(NORENDER): Called as Function // Example(NORENDER): Called as Function
// path = ellipse(d=50, anchor=FRONT, spin=45); // path = ellipse(d=50, anchor=FRONT, spin=45);
module ellipse(r, d, realign=false, circum=false, anchor=CENTER, spin=0) { module ellipse(r, d, realign=false, circum=false, uniform=false, anchor=CENTER, spin=0)
r = get_radius(r=r, d=d, dflt=1); {
dummy = assert((is_finite(r) || is_vector(r,2)) && all_positive(r), "Invalid radius or diameter for ellipse"); r = force_list(get_radius(r=r, d=d, dflt=1),2);
dummy = assert(is_vector(r,2) && all_positive(r), "Invalid radius or diameter for ellipse");
sides = segs(max(r)); sides = segs(max(r));
sc = circum? (1 / cos(180/sides)) : 1; sc = circum? (1 / cos(180/sides)) : 1;
rx = default(r[0],r) * sc; rx = r.x * sc;
ry = default(r[1],r) * sc; ry = r.y * sc;
attachable(anchor,spin, two_d=true, r=[rx,ry]) { attachable(anchor,spin, two_d=true, r=[rx,ry]) {
if (rx < ry) { if (uniform) {
assert(!circum, "Circum option not allowed when \"uniform\" is true");
polygon(ellipse(r,realign=realign, circum=circum, uniform=true));
}
else if (rx < ry) {
xscale(rx/ry) { xscale(rx/ry) {
zrot(realign? 180/sides : 0) { zrot(realign? 180/sides : 0) {
circle(r=ry, $fn=sides); circle(r=ry, $fn=sides);
@ -270,14 +275,42 @@ module ellipse(r, d, realign=false, circum=false, anchor=CENTER, spin=0) {
} }
function ellipse(r, d, realign=false, circum=false, anchor=CENTER, spin=0) = // Iterative refinement to produce an inscribed polygon
// in an ellipse whose side lengths are all equal
function _ellipse_refine(a,b,N, _theta=[]) =
len(_theta)==0? _ellipse_refine(a,b,N,lerpn(0,360,N,endpoint=false))
:
let(
pts = [for(t=_theta) [a*cos(t),b*sin(t)]],
lenlist= path_segment_lengths(pts,closed=true),
meanlen = mean(lenlist),
error = lenlist/meanlen
)
all_equal(error,EPSILON) ? pts
:
let(
dtheta = [each deltas(_theta),
360-last(_theta)],
newdtheta = [for(i=idx(dtheta)) dtheta[i]/error[i]],
adjusted = [0,each cumsum(list_head(newdtheta / sum(newdtheta) * 360))]
)
_ellipse_refine(a,b,N,adjusted);
function ellipse(r, d, realign=false, circum=false, uniform=false, anchor=CENTER, spin=0) =
let(
r = force_list(get_radius(r=r, d=d, dflt=1),2),
sides = segs(max(r))
)
uniform ? assert(!circum, "Circum option not allowed when \"uniform\" is true")
reorient(anchor,spin,two_d=true,r=[r.x,r.y],p=_ellipse_refine(r.x,r.y,sides))
:
let( let(
r = get_radius(r=r, d=d, dflt=1),
sides = segs(max(r)),
offset = realign? 180/sides : 0, offset = realign? 180/sides : 0,
sc = circum? (1 / cos(180/sides)) : 1, sc = circum? (1 / cos(180/sides)) : 1,
rx = default(r[0],r) * sc, rx = r.x * sc,
ry = default(r[1],r) * sc, ry = r.y * sc,
pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) [rx*cos(a), ry*sin(a)]] pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) [rx*cos(a), ry*sin(a)]]
) reorient(anchor,spin, two_d=true, r=[rx,ry], p=pts); ) reorient(anchor,spin, two_d=true, r=[rx,ry], p=pts);
@ -780,6 +813,7 @@ module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER
// align_pit = If given as a 2D vector, rotates the whole shape so that the first inner corner is pointed towards that direction. This occurs before spin. // align_pit = If given as a 2D vector, rotates the whole shape so that the first inner corner is pointed towards that direction. This occurs before spin.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// atype = Choose "hull" or "intersect" anchor methods. Default: "hull"
// Extra Anchors: // Extra Anchors:
// "tip0" ... "tip4" = Each tip has an anchor, pointing outwards. // "tip0" ... "tip4" = Each tip has an anchor, pointing outwards.
// "pit0" ... "pit4" = The inside corner between each tip has an anchor, pointing outwards. // "pit0" ... "pit4" = The inside corner between each tip has an anchor, pointing outwards.
@ -801,7 +835,8 @@ module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER
// stroke([[0,0],[0,7]], endcap2="arrow2"); // stroke([[0,0],[0,7]], endcap2="arrow2");
// Example(2D): Called as Function // Example(2D): Called as Function
// stroke(closed=true, star(n=5, r=50, ir=25)); // stroke(closed=true, star(n=5, r=50, ir=25));
function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, _mat, _anchs) = function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, atype="hull", _mat, _anchs) =
assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"")
assert(is_undef(align_tip) || is_vector(align_tip)) assert(is_undef(align_tip) || is_vector(align_tip))
assert(is_undef(align_pit) || is_vector(align_pit)) assert(is_undef(align_pit) || is_vector(align_pit))
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit") assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit")
@ -843,10 +878,11 @@ function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit
named_anchor(str("midpt",i), pos, unit(pos,BACK), 0), named_anchor(str("midpt",i), pos, unit(pos,BACK), 0),
] ]
] ]
) reorient(anchor,spin, two_d=true, path=path, p=path, anchors=anchors); ) reorient(anchor,spin, two_d=true, path=path, p=path, extent=atype=="hull", anchors=anchors);
module star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0) { module star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, atype="hull") {
assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"");
assert(is_undef(align_tip) || is_vector(align_tip)); assert(is_undef(align_tip) || is_vector(align_tip));
assert(is_undef(align_pit) || is_vector(align_pit)); assert(is_undef(align_pit) || is_vector(align_pit));
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit"); assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit");
@ -874,7 +910,7 @@ module star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit,
] ]
]; ];
path = star(n=n, r=r, ir=ir, realign=realign, _mat=mat, _anchs=anchors); path = star(n=n, r=r, ir=ir, realign=realign, _mat=mat, _anchs=anchors);
attachable(anchor,spin, two_d=true, path=path, anchors=anchors) { attachable(anchor,spin, two_d=true, path=path, extent=atype=="hull", anchors=anchors) {
polygon(path); polygon(path);
children(); children();
} }
@ -948,7 +984,7 @@ module jittered_poly(path, dist=1/512) {
// Function&Module: teardrop2d() // Function&Module: teardrop2d()
// //
// Description: // Description:
// Makes a 2D teardrop shape. Useful for extruding into 3D printable holes. // Makes a 2D teardrop shape. Useful for extruding into 3D printable holes. Uses "intersect" style anchoring.
// //
// Usage: As Module // Usage: As Module
// teardrop2d(r/d=, [ang], [cap_h]); // teardrop2d(r/d=, [ang], [cap_h]);
@ -979,7 +1015,7 @@ module jittered_poly(path, dist=1/512) {
module teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0) module teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0)
{ {
path = teardrop2d(r=r, d=d, ang=ang, cap_h=cap_h); path = teardrop2d(r=r, d=d, ang=ang, cap_h=cap_h);
attachable(anchor,spin, two_d=true, path=path) { attachable(anchor,spin, two_d=true, path=path, extent=false) {
polygon(path); polygon(path);
children(); children();
} }
@ -1008,7 +1044,7 @@ function teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0) =
), ),
maxx_idx = max_index(column(path,0)), maxx_idx = max_index(column(path,0)),
path2 = list_rotate(path,maxx_idx) path2 = list_rotate(path,maxx_idx)
) reorient(anchor,spin, two_d=true, path=path2, p=path2); ) reorient(anchor,spin, two_d=true, path=path2, p=path2, extent=false);
@ -1023,7 +1059,7 @@ function teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0) =
// See Also: circle(), ellipse() // See Also: circle(), ellipse()
// Description: // Description:
// When called as a function, returns a 2D path forming a shape of two circles joined by curved waist. // When called as a function, returns a 2D path forming a shape of two circles joined by curved waist.
// When called as a module, creates a 2D shape of two circles joined by curved waist. // When called as a module, creates a 2D shape of two circles joined by curved waist. Uses "hull" style anchoring.
// Arguments: // Arguments:
// r = The radius of the end circles. // r = The radius of the end circles.
// spread = The distance between the centers of the end circles. Default: 10 // spread = The distance between the centers of the end circles. Default: 10
@ -1094,6 +1130,8 @@ function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
// Description: // Description:
// When called as a function, returns a 2D path for the outline of the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. // When called as a function, returns a 2D path for the outline of the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape.
// When called as a module, creates a 2D [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. // When called as a module, creates a 2D [Superformula](https://en.wikipedia.org/wiki/Superformula) shape.
// Note that the "hull" type anchoring (the default) is more intuitive for concave star-like shapes, but the anchor points do not
// necesarily lie on the line of the anchor vector, which can be confusing, especially for simpler, ellipse-like shapes.
// Arguments: // Arguments:
// step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate. // step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate.
// m1 = The m1 argument for the superformula. Default: 4. // m1 = The m1 argument for the superformula. Default: 4.
@ -1108,6 +1146,7 @@ function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
// d = Diameter of the shape. Scale shape to fit in a circle of diameter d. // d = Diameter of the shape. Scale shape to fit in a circle of diameter d.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// atype = Select "hull" or "intersect" style anchoring. Default: "hull".
// Example(2D): // Example(2D):
// supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,r=50); // supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,r=50);
// Example(2D): Called as Function // Example(2D): Called as Function
@ -1133,8 +1172,9 @@ function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
// Examples: // Examples:
// linear_extrude(height=0.3, scale=0) supershape(step=1, m1=6, n1=0.4, n2=0, n3=6); // linear_extrude(height=0.3, scale=0) supershape(step=1, m1=6, n1=0.4, n2=0, n3=6);
// linear_extrude(height=5, scale=0) supershape(step=1, b=3, m1=6, n1=3.8, n2=16, n3=10); // linear_extrude(height=5, scale=0) supershape(step=1, b=3, m1=6, n1=3.8, n2=16, n3=10);
function supershape(step=0.5, m1=4, m2, n1=1, n2, n3, a=1, b, r, d,anchor=CENTER, spin=0) = function supershape(step=0.5, m1=4, m2, n1=1, n2, n3, a=1, b, r, d,anchor=CENTER, spin=0, atype="hull") =
let( let(
assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\""),
r = get_radius(r=r, d=d, dflt=undef), r = get_radius(r=r, d=d, dflt=undef),
m2 = is_def(m2) ? m2 : m1, m2 = is_def(m2) ? m2 : m1,
n2 = is_def(n2) ? n2 : n1, n2 = is_def(n2) ? n2 : n1,
@ -1146,11 +1186,11 @@ function supershape(step=0.5, m1=4, m2, n1=1, n2, n3, a=1, b, r, d,anchor=CENTER
rads = [for (theta = angs) _superformula(theta=theta,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b)], rads = [for (theta = angs) _superformula(theta=theta,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b)],
scale = is_def(r) ? r/max(rads) : 1, scale = is_def(r) ? r/max(rads) : 1,
path = [for (i = [steps:-1:1]) let(a=angs[i]) scale*rads[i]*[cos(a), sin(a)]] path = [for (i = [steps:-1:1]) let(a=angs[i]) scale*rads[i]*[cos(a), sin(a)]]
) reorient(anchor,spin, two_d=true, path=path, p=path); ) reorient(anchor,spin, two_d=true, path=path, p=path, extent=atype=="hull");
module supershape(step=0.5,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=undef, d=undef, anchor=CENTER, spin=0) { module supershape(step=0.5,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=undef, d=undef, anchor=CENTER, spin=0) {
path = supershape(step=step,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b,r=r,d=d); path = supershape(step=step,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b,r=r,d=d);
attachable(anchor,spin, two_d=true, path=path) { attachable(anchor,spin,extent=atype=="hull", two_d=true, path=path) {
polygon(path); polygon(path);
children(); children();
} }
@ -1165,7 +1205,7 @@ module supershape(step=0.5,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=und
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// See Also: regular_ngon(), pentagon(), hexagon(), octagon() // See Also: regular_ngon(), pentagon(), hexagon(), octagon()
// Description: // Description:
// Creates a 2D Reuleaux Polygon; a constant width shape that is not circular. // Creates a 2D Reuleaux Polygon; a constant width shape that is not circular. Uses "intersect" type anchoring.
// Arguments: // Arguments:
// N = Number of "sides" to the Reuleaux Polygon. Must be an odd positive number. Default: 3 // N = Number of "sides" to the Reuleaux Polygon. Must be an odd positive number. Default: 3
// r = Radius of the shape. Scale shape to fit in a circle of radius r. // r = Radius of the shape. Scale shape to fit in a circle of radius r.
@ -1192,7 +1232,7 @@ module reuleaux_polygon(N=3, r, d, anchor=CENTER, spin=0) {
cp = polar_to_xy(r, ca) cp = polar_to_xy(r, ca)
) named_anchor(str("tip",i), cp, unit(cp,BACK), 0), ) named_anchor(str("tip",i), cp, unit(cp,BACK), 0),
]; ];
attachable(anchor,spin, two_d=true, path=path, anchors=anchors) { attachable(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors) {
polygon(path); polygon(path);
children(); children();
} }
@ -1219,7 +1259,7 @@ function reuleaux_polygon(N=3, r, d, anchor=CENTER, spin=0) =
cp = polar_to_xy(r, ca) cp = polar_to_xy(r, ca)
) named_anchor(str("tip",i), cp, unit(cp,BACK), 0), ) named_anchor(str("tip",i), cp, unit(cp,BACK), 0),
] ]
) reorient(anchor,spin, two_d=true, path=path, anchors=anchors, p=path); ) reorient(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors, p=path);
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

107
skin.scad
View file

@ -150,11 +150,11 @@
// method = method for connecting profiles, one of "distance", "fast_distance", "tangent", "direct" or "reindex". Default: "direct". // method = method for connecting profiles, one of "distance", "fast_distance", "tangent", "direct" or "reindex". Default: "direct".
// z = array of height values for each profile if the profiles are 2d // z = array of height values for each profile if the profiles are 2d
// convexity = convexity setting for use with polyhedron. (module only) Default: 10 // convexity = convexity setting for use with polyhedron. (module only) Default: 10
// anchor = Translate so anchor point is at the origin. (module only) Default: "origin" // anchor = Translate so anchor point is at the origin. Default: "origin"
// spin = Rotate this many degrees around Z axis after anchor. (module only) Default: 0 // spin = Rotate this many degrees around Z axis after anchor. Default: 0
// orient = Vector to rotate top towards after spin (module only) // orient = Vector to rotate top towards after spin
// extent = use extent method for computing anchors. (module only) Default: false // atype = Select "hull" or "intersect anchor types. Default: "hull"
// cp = set centerpoint for anchor computation. (module only) Default: object centroid // cp = set centerpoint for anchor computation. Default: "centroid"
// style = vnf_vertex_array style. Default: "min_edge" // style = vnf_vertex_array style. Default: "min_edge"
// Example: // Example:
// skin([octagon(4), circle($fn=70,r=2)], z=[0,3], slices=10); // skin([octagon(4), circle($fn=70,r=2)], z=[0,3], slices=10);
@ -383,18 +383,17 @@
// } // }
// } // }
module skin(profiles, slices, refine=1, method="direct", sampling, caps, closed=false, z, style="min_edge", convexity=10, module skin(profiles, slices, refine=1, method="direct", sampling, caps, closed=false, z, style="min_edge", convexity=10,
anchor="origin",cp,spin=0, orient=UP, extent=false) anchor="origin",cp="centroid",spin=0, orient=UP, atype="hull")
{ {
vnf = skin(profiles, slices, refine, method, sampling, caps, closed, z, style=style); vnf = skin(profiles, slices, refine, method, sampling, caps, closed, z, style=style);
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : centroid(vnf)) vnf_polyhedron(vnf,convexity=convexity,spin=spin,anchor=anchor,orient=orient,atype=atype,cp=cp)
{
vnf_polyhedron(vnf,convexity=convexity);
children(); children();
}
} }
function skin(profiles, slices, refine=1, method="direct", sampling, caps, closed=false, z, style="min_edge") = function skin(profiles, slices, refine=1, method="direct", sampling, caps, closed=false, z, style="min_edge",
anchor="origin",cp="centroid",spin=0, orient=UP, atype="hull") =
assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"")
assert(is_def(slices),"The slices argument must be specified.") assert(is_def(slices),"The slices argument must be specified.")
assert(is_list(profiles) && len(profiles)>1, "Must provide at least two profiles") assert(is_list(profiles) && len(profiles)>1, "Must provide at least two profiles")
let( let(
@ -490,13 +489,13 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close
". Method ",method[i]," requires equal values")) ". Method ",method[i]," requires equal values"))
refine[i] * len(pair[0]) refine[i] * len(pair[0])
) )
subdivide_and_slice(pair,slices[i], nsamples, method=sampling)] subdivide_and_slice(pair,slices[i], nsamples, method=sampling)],
) vnf=vnf_join(
vnf_join(
[for(i=idx(full_list)) [for(i=idx(full_list))
vnf_vertex_array(full_list[i], cap1=i==0 && fullcaps[0], cap2=i==len(full_list)-1 && fullcaps[1], vnf_vertex_array(full_list[i], cap1=i==0 && fullcaps[0], cap2=i==len(full_list)-1 && fullcaps[1],
col_wrap=true, style=style)]); col_wrap=true, style=style)])
)
reorient(anchor,spin,orient,vnf=vnf,p=vnf,extent=atype=="hull",cp=cp);
// Function&Module: path_sweep() // Function&Module: path_sweep()
@ -566,13 +565,12 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close
// caps = Can be a boolean or vector of two booleans. Set to false to disable caps at the two ends. Default: true // caps = Can be a boolean or vector of two booleans. Set to false to disable caps at the two ends. Default: true
// style = vnf_vertex_array style. Default: "min_edge" // style = vnf_vertex_array style. Default: "min_edge"
// transforms = set to true to return transforms instead of a VNF. These transforms can be manipulated and passed to sweep(). Default: false. // transforms = set to true to return transforms instead of a VNF. These transforms can be manipulated and passed to sweep(). Default: false.
// convexity = convexity parameter for polyhedron(). Only accepted by the module version. Default: 10 // convexity = convexity parameter for polyhedron(). (module only) Default: 10
// anchor = Translate so anchor point is at the origin. (module only) Default: "origin" // anchor = Translate so anchor point is at the origin. Default: "origin"
// spin = Rotate this many degrees around Z axis after anchor. (module only) Default: 0 // spin = Rotate this many degrees around Z axis after anchor. Default: 0
// orient = Vector to rotate top towards after spin (module only) // orient = Vector to rotate top towards after spin
// extent = use extent method for computing anchors. (module only) Default: false // atype = Select "hull" or "intersect" anchor types. Default: "hull"
// cp = set centerpoint for anchor computation. (module only) Default: object centroid // cp = set centerpoint for anchor computation. Default: "centroid"
//
// Example(2D): We'll use this shape in several examples // Example(2D): We'll use this shape in several examples
// ushape = [[-10, 0],[-10, 10],[ -7, 10],[ -7, 2],[ 7, 2],[ 7, 7],[ 10, 7],[ 10, 0]]; // ushape = [[-10, 0],[-10, 10],[ -7, 10],[ -7, 2],[ 7, 2],[ 7, 7],[ 10, 7],[ 10, 0]];
// polygon(ushape); // polygon(ushape);
@ -812,20 +810,19 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close
// } // }
module path_sweep(shape, path, method="incremental", normal, closed=false, twist=0, twist_by_length=true, module path_sweep(shape, path, method="incremental", normal, closed=false, twist=0, twist_by_length=true,
symmetry=1, last_normal, tangent, relaxed=false, caps, style="min_edge", convexity=10, symmetry=1, last_normal, tangent, relaxed=false, caps, style="min_edge", convexity=10,
anchor="origin",cp,spin=0, orient=UP, extent=false) anchor="origin",cp="centroid",spin=0, orient=UP, atype="hull")
{ {
vnf = path_sweep(shape, path, method, normal, closed, twist, twist_by_length, vnf = path_sweep(shape, path, method, normal, closed, twist, twist_by_length,
symmetry, last_normal, tangent, relaxed, caps, style); symmetry, last_normal, tangent, relaxed, caps, style);
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : centroid(vnf)) vnf_polyhedron(vnf,convexity=convexity,anchor=anchor, spin=spin, orient=orient, vnf=vnf, atype=atype, cp=cp)
{
vnf_polyhedron(vnf,convexity=convexity);
children(); children();
}
} }
function path_sweep(shape, path, method="incremental", normal, closed=false, twist=0, twist_by_length=true, function path_sweep(shape, path, method="incremental", normal, closed=false, twist=0, twist_by_length=true,
symmetry=1, last_normal, tangent, relaxed=false, caps, style="min_edge", transforms=false) = symmetry=1, last_normal, tangent, relaxed=false, caps, style="min_edge", transforms=false,
anchor="origin",cp="centroid",spin=0, orient=UP, atype="hull") =
assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"")
assert(!closed || twist % (360/symmetry)==0, str("For a closed sweep, twist must be a multiple of 360/symmetry = ",360/symmetry)) assert(!closed || twist % (360/symmetry)==0, str("For a closed sweep, twist must be a multiple of 360/symmetry = ",360/symmetry))
assert(closed || symmetry==1, "symmetry must be 1 when closed is false") assert(closed || symmetry==1, "symmetry must be 1 when closed is false")
assert(is_integer(symmetry) && symmetry>0, "symmetry must be a positive integer") assert(is_integer(symmetry) && symmetry>0, "symmetry must be a positive integer")
@ -919,7 +916,9 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
apply(transform_list[L], rshape)), apply(transform_list[L], rshape)),
dummy = ends_match ? 0 : echo("WARNING: ***** The points do not match when closing the model *****") dummy = ends_match ? 0 : echo("WARNING: ***** The points do not match when closing the model *****")
) )
transforms ? transform_list : sweep(is_path(shape)?clockwise_polygon(shape):shape, transform_list, closed=false, caps=fullcaps,style=style); transforms ? transform_list
: sweep(is_path(shape)?clockwise_polygon(shape):shape, transform_list, closed=false, caps=fullcaps,style=style,
anchor=anchor,cp=cp,spin=spin,orient=orient,atype=atype);
// Function&Module: path_sweep2d() // Function&Module: path_sweep2d()
@ -946,11 +945,11 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
// style = vnf_vertex_array style. Default: "min_edge" // style = vnf_vertex_array style. Default: "min_edge"
// --- // ---
// convexity = convexity parameter for polyhedron (module only) Default: 10 // convexity = convexity parameter for polyhedron (module only) Default: 10
// anchor = Translate so anchor point is at the origin. (module only) Default: "origin" // anchor = Translate so anchor point is at the origin. Default: "origin"
// spin = Rotate this many degrees around Z axis after anchor. (module only) Default: 0 // spin = Rotate this many degrees around Z axis after anchor. Default: 0
// orient = Vector to rotate top towards after spin (module only) // orient = Vector to rotate top towards after spin
// extent = use extent method for computing anchors. (module only) Default: false // atype = Select "hull" or "intersect" anchor types. Default: "hull"
// cp = set centerpoint for anchor computation. (module only) Default: object centroid // cp = set centerpoint for anchor computation. Default: "centroid"
// Example: Sine wave example with self-intersections at each peak. This would fail with path_sweep(). // Example: Sine wave example with self-intersections at each peak. This would fail with path_sweep().
// sinewave = [for(i=[-30:10:360*2+30]) [i/40,3*sin(i)]]; // sinewave = [for(i=[-30:10:360*2+30]) [i/40,3*sin(i)]];
// path_sweep2d(circle(r=3,$fn=15), sinewave); // path_sweep2d(circle(r=3,$fn=15), sinewave);
@ -967,7 +966,8 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
// path_sweep2d(circle(r=3.25, $fn=32), select(ellipse,floor(L*.2),ceil(L*.8)),closed=false); // path_sweep2d(circle(r=3.25, $fn=32), select(ellipse,floor(L*.2),ceil(L*.8)),closed=false);
// path_sweep2d(circle(r=3.25, $fn=32), select(ellipse,floor(L*.7),ceil(L*.3)),closed=false); // path_sweep2d(circle(r=3.25, $fn=32), select(ellipse,floor(L*.7),ceil(L*.3)),closed=false);
function path_sweep2d(shape, path, closed=false, caps, quality=1, style="min_edge") = function path_sweep2d(shape, path, closed=false, caps, quality=1, style="min_edge",
anchor="origin",cp="centroid",spin=0, orient=UP, atype="hull") =
let( let(
caps = is_def(caps) ? caps caps = is_def(caps) ? caps
: closed ? false : true, : closed ? false : true,
@ -992,23 +992,21 @@ function path_sweep2d(shape, path, closed=false, caps, quality=1, style="min_edg
) )
select(path3d(ofs[0],pt.y),map) select(path3d(ofs[0],pt.y),map)
] ]
) ),
) vnf = vnf_vertex_array([
vnf_vertex_array([
each proflist, each proflist,
if (closed) proflist[0] if (closed) proflist[0]
],cap1=fullcaps[0],cap2=fullcaps[1],col_wrap=true,style=style); ],cap1=fullcaps[0],cap2=fullcaps[1],col_wrap=true,style=style)
)
reorient(anchor,spin,orient,vnf=vnf,p=vnf,extent=atype=="hull",cp=cp);
module path_sweep2d(profile, path, closed=false, caps, quality=1, style="min_edge", convexity=10, module path_sweep2d(profile, path, closed=false, caps, quality=1, style="min_edge", convexity=10,
anchor="origin", cp, spin=0, orient=UP, extent=false) anchor="origin", cp="centroid", spin=0, orient=UP, atype="hull")
{ {
vnf = path_sweep2d(profile, path, closed, caps, quality, style); vnf = path_sweep2d(profile, path, closed, caps, quality, style);
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : centroid(vnf)) vnf_polyhedron(vnf,convexity=convexity,anchor=anchor, spin=spin, orient=orient, vnf=vnf, atype=atype, cp=cp)
{
vnf_polyhedron(vnf,convexity=convexity);
children(); children();
}
} }
// Extract vertex mapping from offset face list. The output of this function // Extract vertex mapping from offset face list. The output of this function
@ -1071,11 +1069,11 @@ function _ofs_face_edge(face,firstlen,second=false) =
// style = vnf_vertex_array style. Default: "min_edge" // style = vnf_vertex_array style. Default: "min_edge"
// --- // ---
// convexity = convexity setting for use with polyhedron. (module only) Default: 10 // convexity = convexity setting for use with polyhedron. (module only) Default: 10
// anchor = Translate so anchor point is at the origin. (module only) Default: "origin" // anchor = Translate so anchor point is at the origin. Default: "origin"
// spin = Rotate this many degrees around Z axis after anchor. (module only) Default: 0 // spin = Rotate this many degrees around Z axis after anchor. Default: 0
// orient = Vector to rotate top towards after spin (module only) // orient = Vector to rotate top towards after spin (module only)
// extent = use extent method for computing anchors. (module only) Default: false // atype = Select "hull" or "intersect" anchor types. Default: "hull"
// cp = set centerpoint for anchor computation. (module only) Default: object centroid // cp = set centerpoint for anchor computation. Default: "centroid"
// Example: This is the "sweep-drop" example from list-comprehension-demos. // Example: This is the "sweep-drop" example from list-comprehension-demos.
// function drop(t) = 100 * 0.5 * (1 - cos(180 * t)) * sin(180 * t) + 1; // function drop(t) = 100 * 0.5 * (1 - cos(180 * t)) * sin(180 * t) + 1;
// function path(t) = [0, 0, 80 + 80 * cos(180 * t)]; // function path(t) = [0, 0, 80 + 80 * cos(180 * t)];
@ -1097,7 +1095,8 @@ function _ofs_face_edge(face,firstlen,second=false) =
// inside = [for(i=[24:-1:2]) up(i)*rot(i)*scale(1.2*i/24+1)]; // inside = [for(i=[24:-1:2]) up(i)*rot(i)*scale(1.2*i/24+1)];
// sweep(shape, concat(outside,inside)); // sweep(shape, concat(outside,inside));
function sweep(shape, transforms, closed=false, caps, style="min_edge") = function sweep(shape, transforms, closed=false, caps, style="min_edge",
anchor="origin", cp="centroid", spin=0, orient=UP, atype="hull") =
assert(is_consistent(transforms, ident(4)), "Input transforms must be a list of numeric 4x4 matrices in sweep") assert(is_consistent(transforms, ident(4)), "Input transforms must be a list of numeric 4x4 matrices in sweep")
assert(is_path(shape,2) || is_region(shape), "Input shape must be a 2d path or a region.") assert(is_path(shape,2) || is_region(shape), "Input shape must be a 2d path or a region.")
let( let(
@ -1128,17 +1127,15 @@ function sweep(shape, transforms, closed=false, caps, style="min_edge") =
module sweep(shape, transforms, closed=false, caps, style="min_edge", convexity=10, module sweep(shape, transforms, closed=false, caps, style="min_edge", convexity=10,
anchor="origin",cp,spin=0, orient=UP, extent=false) anchor="origin",cp="centroid",spin=0, orient=UP, atype="hull")
{ {
vnf = sweep(shape, transforms, closed, caps, style); vnf = sweep(shape, transforms, closed, caps, style);
attachable(anchor=anchor, spin=spin, orient=orient, vnf=vnf, extent=extent, cp=is_def(cp) ? cp : centroid(vnf)) vnf_polyhedron(vnf,convexity=convexity,anchor=anchor, spin=spin, orient=orient, vnf=vnf, atype=atype, cp=cp)
{
vnf_polyhedron(vnf,convexity=convexity);
children(); children();
}
} }
// Section: Functions for resampling and slicing profile lists // Section: Functions for resampling and slicing profile lists
// Function: subdivide_and_slice() // Function: subdivide_and_slice()

View file

@ -787,10 +787,11 @@ function _slice_3dpolygons(polys, dir, cuts) =
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `"origin"` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `"origin"`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
module vnf_polyhedron(vnf, convexity=2, extent=true, cp=[0,0,0], anchor="origin", spin=0, orient=UP) { // atype = Select "hull" or "intersect" anchor type. Default: "hull"
module vnf_polyhedron(vnf, convexity=2, extent=true, cp="centroid", anchor="origin", spin=0, orient=UP, atype="hull") {
vnf = is_vnf_list(vnf)? vnf_join(vnf) : vnf; vnf = is_vnf_list(vnf)? vnf_join(vnf) : vnf;
cp = is_def(cp) ? cp : centroid(vnf); assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"");
attachable(anchor,spin,orient, vnf=vnf, extent=extent, cp=cp) { attachable(anchor,spin,orient, vnf=vnf, extent=atype=="hull", cp=cp) {
polyhedron(vnf[0], vnf[1], convexity=convexity); polyhedron(vnf[0], vnf[1], convexity=convexity);
children(); children();
} }