Merge pull request #516 from revarbat/revarbat_dev

Revarbat dev
This commit is contained in:
Revar Desmera 2021-04-20 19:01:24 -07:00 committed by GitHub
commit d6f64d0786
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 375 additions and 33 deletions

View file

@ -236,7 +236,7 @@ function attach_geom(
assert(is_vector(size,3)) assert(is_vector(size,3))
assert(is_vector(size2,2)) assert(is_vector(size2,2))
assert(is_vector(shift,2)) assert(is_vector(shift,2))
["cuboid", size, size2, shift, cp, offset, anchors] ["cuboid", size, size2, shift, axis, cp, offset, anchors]
) )
) : !is_undef(vnf)? ( ) : !is_undef(vnf)? (
assert(is_vnf(vnf)) assert(is_vnf(vnf))
@ -462,20 +462,24 @@ function find_anchor(anchor, geom) =
) )
type == "cuboid"? ( //size, size2, shift type == "cuboid"? ( //size, size2, shift
let( let(
size=geom[1], size2=geom[2], shift=point2d(geom[3]), size=geom[1], size2=geom[2],
shift=point2d(geom[3]), axis=point3d(geom[4]),
anch = rot(from=axis, to=UP, p=anchor),
h = size.z, h = size.z,
u = (anchor.z+1)/2, u = (anch.z+1)/2,
axy = point2d(anchor), axy = point2d(anch),
bot = point3d(vmul(point2d(size)/2,axy),-h/2), bot = point3d(vmul(point2d(size)/2,axy),-h/2),
top = point3d(vmul(point2d(size2)/2,axy)+shift,h/2), top = point3d(vmul(point2d(size2)/2,axy)+shift,h/2),
pos = point3d(cp) + lerp(bot,top,u) + offset, pos = point3d(cp) + lerp(bot,top,u) + offset,
sidevec = unit(rot(from=UP, to=top-bot, p=point3d(axy)),UP), sidevec = unit(rot(from=UP, to=top-bot, p=point3d(axy)),UP),
vvec = anchor==CENTER? UP : unit([0,0,anchor.z],UP), vvec = anch==CENTER? UP : unit([0,0,anch.z],UP),
vec = anchor==CENTER? UP : vec = anch==CENTER? UP :
approx(axy,[0,0])? unit(anchor,UP) : approx(axy,[0,0])? unit(anch,UP) :
approx(anchor.z,0)? sidevec : approx(anch.z,0)? sidevec :
unit((sidevec+vvec)/2,UP) unit((sidevec+vvec)/2,UP),
) [anchor, pos, vec, oang] pos2 = rot(from=UP, to=axis, p=pos),
vec2 = rot(from=UP, to=axis, p=vec)
) [anchor, pos2, vec2, oang]
) : type == "cyl"? ( //r1, r2, l, shift ) : type == "cyl"? ( //r1, r2, l, shift
let( let(
rr1=geom[1], rr2=geom[2], l=geom[3], rr1=geom[1], rr2=geom[2], l=geom[3],

View file

@ -468,16 +468,18 @@ function get_anchor(anchor,center,uncentered=BOT,dflt=CENTER) =
// r = get_radius(r1=8, d=6, dflt=1); // Returns: 8 // r = get_radius(r1=8, d=6, dflt=1); // Returns: 8
function get_radius(r1, r2, r, d1, d2, d, dflt) = function get_radius(r1, r2, r, d1, d2, d, dflt) =
assert(num_defined([r1,d1,r2,d2])<2, "Conflicting or redundant radius/diameter arguments given.") assert(num_defined([r1,d1,r2,d2])<2, "Conflicting or redundant radius/diameter arguments given.")
!is_undef(r1) ? assert(is_finite(r1), "Invalid radius r1." ) r1 assert(num_defined([r,d])<2, "Conflicting or redundant radius/diameter arguments given.")
: !is_undef(r2) ? assert(is_finite(r2), "Invalid radius r2." ) r2 let(
: !is_undef(d1) ? assert(is_finite(d1), "Invalid diameter d1." ) d1/2 rad = !is_undef(r1) ? r1
: !is_undef(d2) ? assert(is_finite(d2), "Invalid diameter d2." ) d2/2 : !is_undef(d1) ? d1/2
: !is_undef(r) : !is_undef(r2) ? r2
? assert(is_undef(d), "Conflicting or redundant radius/diameter arguments given.") : !is_undef(d2) ? d2/2
assert(is_finite(r) || is_vector(r,1) || is_vector(r,2), "Invalid radius r." ) : !is_undef(r) ? r
r : !is_undef(d) ? d/2
: !is_undef(d) ? assert(is_finite(d) || is_vector(d,1) || is_vector(d,2), "Invalid diameter d." ) d/2 : dflt
: dflt; )
assert(is_undef(dflt) || is_finite(rad) || is_vector(rad), "Invalid radius." )
rad;
// Function: scalar_vec3() // Function: scalar_vec3()

View file

@ -219,23 +219,359 @@ cube(50, center=true)
## Tagged Operations ## Tagged Operations
BOSL2 introduces the concept of tags. Tags are names that can be given to attachables, so that
you can refer to them when performing `diff()`, `intersect()`, and `hulling()` operations.
### `diff(neg, <pos>, <keep>)`
The `diff()` operator is used to difference away all shapes marked with the tag(s) given to
`neg=`, from shapes marked with the tag(s) given to `pos=`. Anything marked with a tag given
to `keep=` will be unioned onto the result. If no `pos=` argument is given, then everything
marked with a tag given to `neg=` will be differenced from all shapes *not* marked with that
tag.
For example, to difference away a child cylinder from the middle of a parent cube, you can
do this:
```openscad
diff("hole")
cube(100, center=true)
cylinder(h=101, d=50, center=true, $tags="hole");
```
If you give both the `neg=` and `pos=` arguments to `diff()`, then the shapes marked by tags
given to `neg=` will be differenced away from the shapes marked with tags given to `pos=`.
Everything else will be unioned to the result.
```openscad
diff("hole", "post")
cube(100, center=true)
attach([RIGHT,TOP]) {
cylinder(d=95, h=5, $tags="post");
cylinder(d=50, h=11, anchor=CTR, $tags="hole");
}
```
The `keep=` argument takes tags for shapes that you want to keep in the output.
```openscad
diff("dish", keep="antenna")
cube(100, center=true)
attach([FRONT,TOP], overlap=33) {
cylinder(h=33.1, d1=0, d2=95, $tags="dish");
cylinder(h=33.1, d=10, $tags="antenna");
}
```
If you need to mark multiple children with a tag, you can use the `tags()` module.
```openscad
diff("hole")
cube(100, center=true)
attach([FRONT,TOP], overlap=20)
tags("hole") {
cylinder(h=20.1, d1=0, d2=95);
down(10) cylinder(h=30, d=30);
}
```
The parent object can be differenced away from other shapes. Tags are inherited by children,
though, so you will need to set the tags of the children as well as the parent.
```openscad
diff("hole")
cube([20,11,45], center=true, $tags="hole")
cube([40,10,90], center=true, $tags="body");
```
### `intersect(a, <b>, <keep>)`
To perform an intersection of attachables, you can use the `intersect()` module. If given one
argument to `a=`, the parent and all children *not* tagged with that will be intersected by
everything that *is* tagged with it.
```openscad
intersect("bounds")
cube(100, center=true)
cylinder(h=100, d1=120, d2=95, center=true, $fn=72, $tags="bounds");
```
If given both the `a=` and `b=` arguments, then shapes marked with tags given to `a=` will be
intersected with shapes marked with tags given to `b=`, then unioned with all other shapes.
```openscad
intersect("pole", "cap")
cube(100, center=true)
attach([TOP,RIGHT]) {
cube([40,40,80],center=true, $tags="pole");
sphere(d=40*sqrt(2), $tags="cap");
}
```
If the `keep=` argument is given, anything marked with tags passed to it will be unioned with
the result of the union:
```openscad
intersect("bounds", keep="pole")
cube(100, center=true) {
cylinder(h=100, d1=120, d2=95, center=true, $fn=72, $tags="bounds");
zrot(45) xcyl(h=140, d=20, $fn=36, $tags="pole");
}
```
### `hulling(a)`
You can use the `hulling()` module to hull shapes marked with a given tag together, before
unioning the result with every other shape.
```openscad
hulling("hull")
cube(50, center=true, $tags="hull") {
cyl(h=100, d=20);
xcyl(h=100, d=20, $tags="pole");
}
```
## Masking Children ## Masking Children
edge_mask() TBW
corner_mask()
face_profile()
edge_profile()
corner_profile()
## Coloring Attachables ## Coloring Attachables
TBW
## Making Attachables ## Making Attachables
To make a shape attachable, you just need to wrap it with an `attachable()` module with a
basic description of the shape's geometry. By default, the shape is expected to be centered
at the origin. The `attachable()` module expects exactly two children. The first will be
the shape to make attachable, and the second will be `children()`, literally.
### Prismoidal/Cuboidal Attachables
To make a cuboidal or prismoidal shape attachable, you use the `size`, `size2`, and `offset`
arguments of `attachable()`.
In the most basic form, where the shape in fully cuboid, with top and bottom of the same size,
and directly over one another, you can just use `size=`.
```openscad
module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) {
attachable(anchor,spin,orient, size=[s*3,s,s]) {
union() {
xcopies(2*s) cube(s, center=true);
xcyl(h=2*s, d=s/4);
}
children();
}
}
cubic_barbell(100);
```
When the shape is prismoidal, where the top is a different size from the bottom, you can use
the `size2=` argument as well.
```openscad
module prismoidal(size=[100,100,100], scale=0.5, anchor=CENTER, spin=0, orient=UP) {
attachable(anchor,spin,orient, size=size, size2=[size.x, size.y]*scale) {
hull() {
up(size.z/2-0.005)
linear_extrude(height=0.01, center=true)
square([size.x,size.y]*scale, center=true);
down(size.z/2-0.005)
linear_extrude(height=0.01, center=true)
square([size.x,size.y], center=true);
}
children();
}
}
prismoidal([100,60,30], scale=0.5);
```
When the top of the prismoid can be shifted away from directly above the bottom, you can use
the `shift=` argument.
```openscad
module prismoidal(size=[100,100,100], scale=0.5, shift=[0,0], anchor=CENTER, spin=0, orient=UP) {
attachable(anchor,spin,orient, size=size, size2=[size.x, size.y]*scale, shift=shift) {
hull() {
translate([shift.x, shift.y, size.z/2-0.005])
linear_extrude(height=0.01, center=true)
square([size.x,size.y]*scale, center=true);
down(size.z/2-0.005)
linear_extrude(height=0.01, center=true)
square([size.x,size.y], center=true);
}
children();
}
}
prismoidal([100,60,30], scale=0.5, shift=[-30,20]);
```
In the case that the prismoid is not oriented vertically, you can use the `axis=` argument.
```openscad
module yprismoidal(
size=[100,100,100], scale=0.5, shift=[0,0],
anchor=CENTER, spin=0, orient=UP
) {
attachable(
anchor, spin, orient,
size=size, size2=point2d(size)*scale,
shift=shift, axis=BACK
) {
xrot(-90) hull() {
translate([shift.x, shift.y, size.z/2-0.005])
linear_extrude(height=0.01, center=true)
square([size.x,size.y]*scale, center=true);
down(size.z/2-0.005)
linear_extrude(height=0.01, center=true)
square([size.x,size.y], center=true);
}
children();
}
}
yprismoidal([100,60,30], scale=1.5, shift=[20,20]);
```
### Cylindrical Attachables
To make a cylindrical shape attachable, you use the `l`, and `r`/`d`, args of `attachable()`.
```openscad
module twistar(l,r,d, anchor=CENTER, spin=0, orient=UP) {
r = get_radius(r=r,d=d,dflt=1);
attachable(anchor,spin,orient, r=r, l=l) {
linear_extrude(height=l, twist=90, slices=20, center=true, convexity=4)
star(n=20, r=r, ir=r*0.9);
children();
}
}
twistar(l=100, r=40);
```
If the cylinder is elipsoidal in shape, you can pass the inequal X/Y sizes as a 2-item vector
to the `r=` or `d=` argument.
```openscad
module ovalstar(l,rx,ry, anchor=CENTER, spin=0, orient=UP) {
attachable(anchor,spin,orient, r=[rx,ry], l=l) {
linear_extrude(height=l, center=true, convexity=4)
scale([1,ry/rx,1])
star(n=20, r=rx, ir=rx*0.9);
children();
}
}
ovalstar(l=100, rx=50, ry=30);
```
For cylindrical shapes that arent oriented vertically, use the `axis=` argument.
```openscad
module ytwistar(l,r,d, anchor=CENTER, spin=0, orient=UP) {
r = get_radius(r=r,d=d,dflt=1);
attachable(anchor,spin,orient, r=r, l=l) {
xrot(-90)
linear_extrude(height=l, twist=90, slices=20, center=true, convexity=4)
star(n=20, r=r, ir=r*0.9);
children();
}
}
ytwistar(l=100, r=40);
```
### Conical Attachables
To make a conical shape attachable, you use the `l`, `r1`/`d1`, and `r2`/`d2`, args of
`attachable()`.
```openscad
module twistar(l, r,r1,r2, d,d1,d2, anchor=CENTER, spin=0, orient=UP) {
r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=1);
r2 = get_radius(r1=r2,r=r,d1=d2,d=d,dflt=1);
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) {
linear_extrude(height=l, twist=90, scale=r2/r1, slices=20, center=true, convexity=4)
star(n=20, r=r1, ir=r1*0.9);
children();
}
}
twistar(l=100, r1=40, r2=20);
```
If the cone is elipsoidal in shape, you can pass the inequal X/Y sizes as a 2-item vectors
to the `r1=`/`r2=` or `d1=`/`d2=` arguments.
```openscad
module ovalish(l,rx1,ry1,rx2,ry2, anchor=CENTER, spin=0, orient=UP) {
attachable(anchor,spin,orient, r1=[rx1,ry1], r2=[rx2,ry2], l=l) {
hull() {
up(l/2-0.005)
linear_extrude(height=0.01, center=true)
scale([1,ry2/rx2,1])
oval([rx2,ry2]);
down(l/2-0.005)
linear_extrude(height=0.01, center=true)
scale([1,ry1/rx1,1])
oval([rx1,ry1]);
}
children();
}
}
ovalish(l=100, rx1=40, ry1=30, rx2=30, ry2=40);
```
For conical shapes that are not oriented vertically, use the `axis=` argument.
```openscad
module ytwistar(l, r,r1,r2, d,d1,d2, anchor=CENTER, spin=0, orient=UP) {
r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=1);
r2 = get_radius(r1=r2,r=r,d1=d2,d=d,dflt=1);
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l, axis=BACK) {
xrot(-90)
linear_extrude(height=l, twist=90, scale=r2/r1, slices=20, center=true, convexity=4)
star(n=20, r=r1, ir=r1*0.9);
children();
}
}
ytwistar(l=100, r1=40, r2=20);
```
### Spherical Attachables
To make a spherical shape attachable, you use the `r`/`d` args of `attachable()`.
```openscad
module spikeball(r, d, anchor=CENTER, spin=0, orient=UP) {
r = get_radius(r=r,d=d,dflt=1);
attachable(anchor,spin,orient, r=r*1.1) {
union() {
ovoid_spread(r=r, n=512, cone_ang=180) cylinder(r1=r/10, r2=0, h=r/10);
sphere(r=r);
}
children();
}
}
spikeball(r=50);
```
If the shape is more of an ovoid, you can pass a 3-item vector of sizes to `r=` or `d=`.
```openscad
module spikeball(r, d, scale, anchor=CENTER, spin=0, orient=UP) {
r = get_radius(r=r,d=d,dflt=1);
attachable(anchor,spin,orient, r=r*1.1*scale) {
union() {
ovoid_spread(r=r, n=512, scale=scale, cone_ang=180) cylinder(r1=r/10, r2=0, h=r/10);
scale(scale) sphere(r=r);
}
children();
}
}
spikeball(r=50, scale=[0.75,1,1.5]);
```
### VNF Attachables
If the shape just doesn't fit into any of the above categories, and you constructed it as a
[VNF](vnf.scad), you can use the VNF itself to describe the geometry.
TBW
## Making Named Anchors ## Making Named Anchors
TBW

View file

@ -837,7 +837,7 @@ function vnf_validate(vnf, show_warns=true, check_isects=false) =
_vnf_validate_err("BAD_INDEX", [idx]) _vnf_validate_err("BAD_INDEX", [idx])
], ],
issues = concat(issues, bad_indices) issues = concat(issues, bad_indices)
) issues? issues : ) bad_indices? issues :
let( let(
repeated_faces = [ repeated_faces = [
for (i=idx(dfaces), j=idx(dfaces)) for (i=idx(dfaces), j=idx(dfaces))
@ -854,7 +854,7 @@ function vnf_validate(vnf, show_warns=true, check_isects=false) =
_vnf_validate_err("DUP_FACE", [for (i=sface1) varr[i]]) _vnf_validate_err("DUP_FACE", [for (i=sface1) varr[i]])
], ],
issues = concat(issues, repeated_faces) issues = concat(issues, repeated_faces)
) issues? issues : ) repeated_faces? issues :
let( let(
multconn_edges = unique([ multconn_edges = unique([
for (i = idx(uniq_edges)) for (i = idx(uniq_edges))
@ -862,7 +862,7 @@ function vnf_validate(vnf, show_warns=true, check_isects=false) =
_vnf_validate_err("MULTCONN", [for (i=uniq_edges[i]) varr[i]]) _vnf_validate_err("MULTCONN", [for (i=uniq_edges[i]) varr[i]])
]), ]),
issues = concat(issues, multconn_edges) issues = concat(issues, multconn_edges)
) issues? issues : ) multconn_edges? issues :
let( let(
reversals = unique([ reversals = unique([
for(i = idx(dfaces), j = idx(dfaces)) if(i != j) for(i = idx(dfaces), j = idx(dfaces)) if(i != j)
@ -873,7 +873,7 @@ function vnf_validate(vnf, show_warns=true, check_isects=false) =
_vnf_validate_err("REVERSAL", [for (i=edge1) varr[i]]) _vnf_validate_err("REVERSAL", [for (i=edge1) varr[i]])
]), ]),
issues = concat(issues, reversals) issues = concat(issues, reversals)
) issues? issues : ) reversals? issues :
let( let(
t_juncts = unique([ t_juncts = unique([
for (v=idx(varr), edge=uniq_edges) let( for (v=idx(varr), edge=uniq_edges) let(
@ -893,7 +893,7 @@ function vnf_validate(vnf, show_warns=true, check_isects=false) =
_vnf_validate_err("T_JUNCTION", [b]) _vnf_validate_err("T_JUNCTION", [b])
]), ]),
issues = concat(issues, t_juncts) issues = concat(issues, t_juncts)
) issues? issues : ) t_juncts? issues :
let( let(
isect_faces = !check_isects? [] : unique([ isect_faces = !check_isects? [] : unique([
for (i = [0:1:len(faces)-2]) let( for (i = [0:1:len(faces)-2]) let(
@ -935,7 +935,7 @@ function vnf_validate(vnf, show_warns=true, check_isects=false) =
_vnf_validate_err("FACE_ISECT", seg) _vnf_validate_err("FACE_ISECT", seg)
]), ]),
issues = concat(issues, isect_faces) issues = concat(issues, isect_faces)
) issues? issues : ) isect_faces? issues :
let( let(
hole_edges = unique([ hole_edges = unique([
for (i=idx(uniq_edges)) for (i=idx(uniq_edges))
@ -945,7 +945,7 @@ function vnf_validate(vnf, show_warns=true, check_isects=false) =
_vnf_validate_err("HOLE_EDGE", [for (i=uniq_edges[i]) varr[i]]) _vnf_validate_err("HOLE_EDGE", [for (i=uniq_edges[i]) varr[i]])
]), ]),
issues = concat(issues, hole_edges) issues = concat(issues, hole_edges)
) issues? issues : ) hole_edges? issues :
let( let(
nonplanars = unique([ nonplanars = unique([
for (i = idx(faces)) let( for (i = idx(faces)) let(