mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Refactored bezier patch code to use VNFs.
This commit is contained in:
parent
d73ab76c9a
commit
d999822355
2 changed files with 105 additions and 54 deletions
157
beziers.scad
157
beziers.scad
|
@ -674,18 +674,17 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
|
||||||
|
|
||||||
// Function: bezier_patch()
|
// Function: bezier_patch()
|
||||||
// Usage:
|
// Usage:
|
||||||
// bezier_patch(patch, [splinesteps], [vertices], [faces]);
|
// bezier_patch(patch, [splinesteps], [vnf]);
|
||||||
// Description:
|
// Description:
|
||||||
// Calculate vertices and faces for forming a partial polyhedron from the given bezier rectangular
|
// Calculate vertices and faces for forming a partial polyhedron from the given bezier rectangular
|
||||||
// or triangular patch. Returns a list containing two elements. The first is the list of unique
|
// or triangular patch. Returns a [VNF structure](vnf.scad): a list containing two elements. The first is the
|
||||||
// vertices. The second is the list of faces, where each face is a list of indices into the list of
|
// list of unique vertices. The second is the list of faces, where each face is a list of indices into the
|
||||||
// vertices. You can chain calls to this, to add more vertices and faces for multiple bezier
|
// list of vertices. You can chain calls to this, to add more vertices and faces for multiple bezier
|
||||||
// patches, to stitch them together into a complete polyhedron.
|
// patches, to stitch them together into a complete polyhedron.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// patch = The rectangular or triangular array of endpoints and control points for this bezier patch.
|
// patch = The rectangular or triangular array of endpoints and control points for this bezier patch.
|
||||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
// splinesteps = Number of steps to divide each bezier segment into. For rectangular patches you can specify [XSTEPS,YSTEPS]. Default: 16
|
||||||
// vertices = Vertex list to add new points to. Default: []
|
// vnf = Vertices'n'Faces [VNF structure](vnf.scad) to add new vertices and faces to. Default: empty VNF
|
||||||
// faces = Face list to add new faces to. Default: []
|
|
||||||
// Example(3D):
|
// Example(3D):
|
||||||
// patch = [
|
// patch = [
|
||||||
// [[-50, 50, 0], [-16, 50, -20], [ 16, 50, 20], [50, 50, 0]],
|
// [[-50, 50, 0], [-16, 50, -20], [ 16, 50, 20], [50, 50, 0]],
|
||||||
|
@ -694,7 +693,7 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
|
||||||
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, -20], [50,-50, 0]]
|
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, -20], [50,-50, 0]]
|
||||||
// ];
|
// ];
|
||||||
// vnf = bezier_patch(patch, splinesteps=16);
|
// vnf = bezier_patch(patch, splinesteps=16);
|
||||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
// vnf_polyhedron(vnf);
|
||||||
// Example(3D):
|
// Example(3D):
|
||||||
// tri = [
|
// tri = [
|
||||||
// [[-50,-33,0], [-25,16,50], [0,66,0]],
|
// [[-50,-33,0], [-25,16,50], [0,66,0]],
|
||||||
|
@ -702,52 +701,107 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
|
||||||
// [[50,-33,0]]
|
// [[50,-33,0]]
|
||||||
// ];
|
// ];
|
||||||
// vnf = bezier_patch(tri, splinesteps=16);
|
// vnf = bezier_patch(tri, splinesteps=16);
|
||||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
// vnf_polyhedron(vnf);
|
||||||
function bezier_patch(patch, splinesteps=16, vertices=[], faces=[]) =
|
// Example(3DFlatSpin): Chaining Patches
|
||||||
is_tripatch(patch)? _bezier_triangle(patch, splinesteps=splinesteps, vertices=vertices, faces=faces) :
|
// patch = [
|
||||||
|
// [[0, 0,0], [33, 0, 0], [67, 0, 0], [100, 0,0]],
|
||||||
|
// [[0, 33,0], [33, 33, 33], [67, 33, 33], [100, 33,0]],
|
||||||
|
// [[0, 67,0], [33, 67, 33], [67, 67, 33], [100, 67,0]],
|
||||||
|
// [[0,100,0], [33,100, 0], [67,100, 0], [100,100,0]],
|
||||||
|
// ];
|
||||||
|
// vnf1 = bezier_patch(patch_translate(patch,[-50,-50,50]));
|
||||||
|
// vnf2 = bezier_patch(vnf=vnf1, patch_rotate(a=[90,0,0],patch_translate(patch,[-50,-50,50])));
|
||||||
|
// vnf3 = bezier_patch(vnf=vnf2, patch_rotate(a=[-90,0,0],patch_translate(patch,[-50,-50,50])));
|
||||||
|
// vnf4 = bezier_patch(vnf=vnf3, patch_rotate(a=[180,0,0],patch_translate(patch,[-50,-50,50])));
|
||||||
|
// vnf5 = bezier_patch(vnf=vnf4, patch_rotate(a=[0,90,0],patch_translate(patch,[-50,-50,50])));
|
||||||
|
// vnf6 = bezier_patch(vnf=vnf5, patch_rotate(a=[0,-90,0],patch_translate(patch,[-50,-50,50])));
|
||||||
|
// vnf_polyhedron(vnf6);
|
||||||
|
// Example(3D): Chaining Patches with Assymmetric Splinesteps
|
||||||
|
// steps = 8;
|
||||||
|
// edge_patch = [
|
||||||
|
// [[-60, 0,-40], [0, 0,-40], [60, 0,-40]],
|
||||||
|
// [[-60, 0, 0], [0, 0, 0], [60, 0, 0]],
|
||||||
|
// [[-60,40, 0], [0,40, 0], [60,40, 0]],
|
||||||
|
// ];
|
||||||
|
// corner_patch = [
|
||||||
|
// [[40, 0,-40], [ 0, 0,-40], [ 0, 40,-40]],
|
||||||
|
// [[40, 0, 0], [ 0, 0, 0], [ 0, 40, 0]],
|
||||||
|
// [[40, 40, 0], [40, 40, 0], [40, 40, 0]]
|
||||||
|
// ];
|
||||||
|
// face_patch = bezier_patch_flat([120,120],N=1,orient=LEFT);
|
||||||
|
// edges = [
|
||||||
|
// for (axrot=[[0,0,0],[0,90,0],[0,0,90]], xang=[-90:90:180])
|
||||||
|
// bezier_patch(
|
||||||
|
// splinesteps=[1,steps],
|
||||||
|
// patch_rotate(a=axrot,
|
||||||
|
// patch_rotate(a=[xang,0,0],
|
||||||
|
// patch_translate(v=[0,-100,100],edge_patch)
|
||||||
|
// )
|
||||||
|
// )
|
||||||
|
// )
|
||||||
|
// ];
|
||||||
|
// corners = [
|
||||||
|
// for (zang=[0,180], xang=[-90:90:180])
|
||||||
|
// bezier_patch(
|
||||||
|
// splinesteps=steps,
|
||||||
|
// patch_rotate(a=[xang,0,zang],
|
||||||
|
// patch_translate(v=[-100,-100,100],corner_patch)
|
||||||
|
// )
|
||||||
|
// )
|
||||||
|
// ];
|
||||||
|
// faces = [
|
||||||
|
// for (axrot=[[0,0,0],[0,90,0],[0,0,90]], zang=[0,180])
|
||||||
|
// bezier_patch(
|
||||||
|
// splinesteps=1,
|
||||||
|
// patch_rotate(a=axrot,
|
||||||
|
// patch_rotate(a=[0,0,zang],
|
||||||
|
// patch_translate(v=[-100,0,0], face_patch)
|
||||||
|
// )
|
||||||
|
// )
|
||||||
|
// )
|
||||||
|
// ];
|
||||||
|
// vnf_polyhedron(concat(edges,corners,faces));
|
||||||
|
function bezier_patch(patch, splinesteps=16, vnf=[[],[]]) =
|
||||||
|
assert(is_num(splinesteps)||is_list(splinesteps))
|
||||||
|
is_tripatch(patch)? _bezier_triangle(patch, splinesteps=splinesteps, vnf=vnf) :
|
||||||
let(
|
let(
|
||||||
base = len(vertices),
|
splinesteps = is_list(splinesteps)? splinesteps : [splinesteps, splinesteps],
|
||||||
pts = [for (v=[0:1:splinesteps], u=[0:1:splinesteps]) bezier_patch_point(patch, u/splinesteps, v/splinesteps)],
|
pts = [for (v=[0:1:splinesteps.y], u=[0:1:splinesteps.x]) bezier_patch_point(patch, u/splinesteps.x, v/splinesteps.y)],
|
||||||
new_vertices = concat(vertices, pts),
|
faces = [
|
||||||
new_faces = [
|
|
||||||
for (
|
for (
|
||||||
v=[0:1:splinesteps-1],
|
v=[0:1:splinesteps.y-1],
|
||||||
u=[0:1:splinesteps-1],
|
u=[0:1:splinesteps.x-1]
|
||||||
i=[0,1]
|
|
||||||
) let (
|
) let (
|
||||||
v1 = u+v*(splinesteps+1) + base,
|
v1 = u+v*(splinesteps.x+1),
|
||||||
v2 = v1 + 1,
|
v2 = v1 + 1,
|
||||||
v3 = v1 + splinesteps + 1,
|
v3 = v1 + splinesteps.x + 1,
|
||||||
v4 = v3 + 1,
|
v4 = v3 + 1
|
||||||
face = i? [v1,v3,v2] : [v2,v3,v4]
|
) each [[v1,v3,v2], [v2,v3,v4]]
|
||||||
) face
|
|
||||||
]
|
]
|
||||||
) [new_vertices, concat(faces, new_faces)];
|
) vnf_merge([vnf, [pts, faces]]);
|
||||||
|
|
||||||
|
|
||||||
function _tri_count(n) = (n*(1+n))/2;
|
function _tri_count(n) = (n*(1+n))/2;
|
||||||
|
|
||||||
|
|
||||||
function _bezier_triangle(tri, splinesteps=16, vertices=[], faces=[]) =
|
function _bezier_triangle(tri, splinesteps=16, vnf=[[],[]]) =
|
||||||
|
assert(is_num(splinesteps))
|
||||||
let(
|
let(
|
||||||
base = len(vertices),
|
|
||||||
pts = [
|
pts = [
|
||||||
for (
|
for (
|
||||||
u=[0:1:splinesteps],
|
u=[0:1:splinesteps],
|
||||||
v=[0:1:splinesteps-u]
|
v=[0:1:splinesteps-u]
|
||||||
) bezier_triangle_point(tri, u/splinesteps, v/splinesteps)
|
) bezier_triangle_point(tri, u/splinesteps, v/splinesteps)
|
||||||
],
|
],
|
||||||
new_vertices = concat(vertices, pts),
|
|
||||||
patchlen = len(tri),
|
|
||||||
tricnt = _tri_count(splinesteps+1),
|
tricnt = _tri_count(splinesteps+1),
|
||||||
new_faces = [
|
faces = [
|
||||||
for (
|
for (
|
||||||
u=[0:1:splinesteps-1],
|
u=[0:1:splinesteps-1],
|
||||||
v=[0:1:splinesteps-u-1]
|
v=[0:1:splinesteps-u-1]
|
||||||
) let (
|
) let (
|
||||||
v1 = v + (tricnt - _tri_count(splinesteps+1-u)) + base,
|
v1 = v + (tricnt - _tri_count(splinesteps+1-u)),
|
||||||
v2 = v1 + 1,
|
v2 = v1 + 1,
|
||||||
v3 = v + (tricnt - _tri_count(splinesteps-u)) + base,
|
v3 = v + (tricnt - _tri_count(splinesteps-u)),
|
||||||
v4 = v3 + 1,
|
v4 = v3 + 1,
|
||||||
allfaces = concat(
|
allfaces = concat(
|
||||||
[[v1,v2,v3]],
|
[[v1,v2,v3]],
|
||||||
|
@ -755,7 +809,7 @@ function _bezier_triangle(tri, splinesteps=16, vertices=[], faces=[]) =
|
||||||
)
|
)
|
||||||
) for (face=allfaces) face
|
) for (face=allfaces) face
|
||||||
]
|
]
|
||||||
) [new_vertices, concat(faces, new_faces)];
|
) vnf_merge([vnf,[pts, faces]]);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -865,21 +919,18 @@ function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=pat
|
||||||
|
|
||||||
// Function: bezier_surface()
|
// Function: bezier_surface()
|
||||||
// Usage:
|
// Usage:
|
||||||
// bezier_surface(patches, [splinesteps], [vertices], [faces]);
|
// bezier_surface(patches, [splinesteps], [vnf]);
|
||||||
// Description:
|
// Description:
|
||||||
// Calculate vertices and faces for forming a (possibly partial)
|
// Calculate vertices and faces for forming a (possibly partial) polyhedron from the given
|
||||||
// polyhedron from the given rectangular and/or triangular bezier
|
// rectangular and/or triangular bezier patches. Returns a [VNF structure](vnf.scad): a list
|
||||||
// patches. Returns a list containing two elements. The first is
|
// containing two elements. The first is the the list of unique vertices. The second is the list
|
||||||
// the list of unique vertices. The second is the list of faces,
|
// of faces, where each face is a list of indices into the list of vertices. You can chain calls to
|
||||||
// where each face is a list of indices into the list of vertices.
|
// this, to add more vertices and faces for multiple bezier patches, to stitch them together into a
|
||||||
// You can chain calls to this, to add more vertices and faces for
|
// complete polyhedron.
|
||||||
// multiple bezier patches, to stitch them together into a complete
|
|
||||||
// polyhedron.
|
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// patches = A list of triangular and/or rectangular bezier patches.
|
// patches = A list of triangular and/or rectangular bezier patches.
|
||||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||||
// vertices = Vertex list to add new points to. Default: []
|
// vnf = Vertices'n'Faces [VNF structure](vnf.scad) to add new vertices and faces to. Default: empty VNF
|
||||||
// faces = Face list to add new faces to. Default: []
|
|
||||||
// Example(3D):
|
// Example(3D):
|
||||||
// patch1 = [
|
// patch1 = [
|
||||||
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
|
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
|
||||||
|
@ -895,12 +946,12 @@ function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=pat
|
||||||
// ];
|
// ];
|
||||||
// vnf = bezier_surface(patches=[patch1, patch2], splinesteps=16);
|
// vnf = bezier_surface(patches=[patch1, patch2], splinesteps=16);
|
||||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||||
function bezier_surface(patches=[], splinesteps=16, i=0, vertices=[], faces=[]) =
|
function bezier_surface(patches=[], splinesteps=16, i=0, vnf=[[],[]]) =
|
||||||
let(
|
let(
|
||||||
vnf = (i >= len(patches))? [vertices, faces] :
|
vnf = (i >= len(patches))? vnf :
|
||||||
bezier_patch(patches[i], splinesteps=splinesteps, vertices=vertices, faces=faces)
|
bezier_patch(patches[i], splinesteps=splinesteps, vnf=vnf)
|
||||||
) (i >= len(patches))? vnf :
|
) (i >= len(patches))? vnf :
|
||||||
bezier_surface(patches=patches, splinesteps=splinesteps, i=i+1, vertices=vnf[0], faces=vnf[1]);
|
bezier_surface(patches=patches, splinesteps=splinesteps, i=i+1, vnf=vnf);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -909,14 +960,13 @@ function bezier_surface(patches=[], splinesteps=16, i=0, vertices=[], faces=[])
|
||||||
|
|
||||||
// Module: bezier_polyhedron()
|
// Module: bezier_polyhedron()
|
||||||
// Useage:
|
// Useage:
|
||||||
// bezier_polyhedron(patches, [splinesteps], [vertices], [faces])
|
// bezier_polyhedron(patches, [splinesteps], [vnf])
|
||||||
// Description:
|
// Description:
|
||||||
// Takes a list of two or more bezier patches and attempts to make a complete polyhedron from them.
|
// Takes a list of two or more bezier patches and attempts to make a complete polyhedron from them.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// patches = A list of triangular and/or rectangular bezier patches.
|
// patches = A list of triangular and/or rectangular bezier patches.
|
||||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||||
// vertices = Vertex list for additional non-bezier faces. Default: []
|
// vnf = Vertices'n'Faces [VNF structure](vnf.scad) to add extra vertices and faces to. Default: empty VNF
|
||||||
// faces = Additional non-bezier faces. Default: []
|
|
||||||
// Example:
|
// Example:
|
||||||
// patch1 = [
|
// patch1 = [
|
||||||
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
|
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
|
||||||
|
@ -931,10 +981,11 @@ function bezier_surface(patches=[], splinesteps=16, i=0, vertices=[], faces=[])
|
||||||
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
|
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
|
||||||
// ];
|
// ];
|
||||||
// bezier_polyhedron([patch1, patch2], splinesteps=8);
|
// bezier_polyhedron([patch1, patch2], splinesteps=8);
|
||||||
module bezier_polyhedron(patches=[], splinesteps=16, vertices=[], faces=[])
|
module bezier_polyhedron(patches=[], splinesteps=16, vnf=[[],[]])
|
||||||
{
|
{
|
||||||
sfc = bezier_surface(patches=patches, splinesteps=splinesteps, vertices=vertices, faces=faces);
|
vnf_polyhedron(
|
||||||
polyhedron(points=sfc[0], faces=sfc[1]);
|
bezier_surface(patches=patches, splinesteps=splinesteps, vnf=vnf)
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -8,7 +8,7 @@
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
BOSL_VERSION = [2,0,27];
|
BOSL_VERSION = [2,0,28];
|
||||||
|
|
||||||
|
|
||||||
// Section: BOSL Library Version Functions
|
// Section: BOSL Library Version Functions
|
||||||
|
|
Loading…
Reference in a new issue