Merge pull request #650 from revarbat/revarbat_dev

Removed stacks.scad and queues.scad.
This commit is contained in:
Revar Desmera 2021-09-15 22:12:48 -07:00 committed by GitHub
commit dbd1597a6c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 0 additions and 545 deletions

View file

@ -1,198 +0,0 @@
//////////////////////////////////////////////////////////////////////
// LibFile: queues.scad
// Queue data structure implementation.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/queues.scad>
//////////////////////////////////////////////////////////////////////
// Section: Queue Data Structure
// A queue is a first-in-first-out collection of items. You can add items onto the tail of the
// queue, or pop items off the head. While you can treat a queue as an opaque data type, using the
// functions below, it's simply implemented as a list. This means that you can use any list
// function to manipulate the queue. The first item in the list is the head queue item.
// Function: queue_init()
// Usage:
// queue = queue_init();
// Description:
// Creates an empty queue/list.
// Example:
// queue = queue_init(); // Return: []
function queue_init() = [];
// Function: queue_empty()
// Usage:
// if (queue_empty(queue)) ...
// Description:
// Returns true if the given queue is empty.
// Arguments:
// queue = The queue to test if empty.
// Example:
// queue = queue_init();
// is_empty = queue_empty(queue); // Returns: true
// queue2 = queue_add(queue, "foo");
// is_empty2 = queue_empty(queue2); // Returns: false
function queue_empty(queue) =
assert(is_list(queue))
len(queue)==0;
// Function: queue_size()
// Usage:
// depth = queue_size(queue);
// Description:
// Returns the number of items in the given queue.
// Arguments:
// queue = The queue to get the size of.
// Example:
// queue = queue_init();
// depth = queue_size(queue); // Returns: 0
// queue2 = queue_add(queue, "foo");
// depth2 = queue_size(queue2); // Returns: 1
// queue3 = queue_add(queue2, ["bar","baz","qux"]);
// depth3 = queue_size(queue3); // Returns: 4
function queue_size(queue) =
assert(is_list(queue))
len(queue);
// Function: queue_head()
// Usage:
// item = queue_head(queue);
// list = queue_head(queue,n);
// Description:
// If `n` is not given, returns the first item from the head of the queue.
// If `n` is given, returns a list of the first `n` items from the head of the queue.
// Arguments:
// queue = The queue/list to get item(s) from the head of.
// Example:
// queue = [4,5,6,7,8,9];
// item = queue_head(queue); // Returns: 4
// list = queue_head(queue,n=3); // Returns: [4,5,6]
function queue_head(queue,n=undef) =
assert(is_list(queue))
is_undef(n)? (
queue[0]
) : (
let(queuesize = len(queue))
assert(is_num(n))
assert(n>=0)
assert(queuesize>=n, "queue underflow")
[for (i=[0:1:n-1]) queue[i]]
);
// Function: queue_tail()
// Usage:
// item = queue_tail(queue);
// list = queue_tail(queue,n);
// Description:
// If `n` is not given, returns the last item from the tail of the queue.
// If `n` is given, returns a list of the last `n` items from the tail of the queue.
// Arguments:
// queue = The queue/list to get item(s) from the tail of.
// Example:
// queue = [4,5,6,7,8,9];
// item = queue_tail(queue); // Returns: 9
// list = queue_tail(queue,n=3); // Returns: [7,8,9]
function queue_tail(queue,n=undef) =
assert(is_list(queue))
let(queuesize = len(queue))
is_undef(n)? (
queue[queuesize-1]
) : (
assert(is_num(n))
assert(n>=0)
assert(queuesize>=n, "queue underflow")
[for (i=[0:1:n-1]) queue[queuesize-n+i]]
);
// Function: queue_peek()
// Usage:
// item = queue_peek(queue,[pos]);
// list = queue_peek(queue,pos,n);
// Description:
// If `n` is not given, returns the queue item at position `pos`.
// If `n` is given, returns a list of the `n` queue items at and after position `pos`.
// Arguments:
// queue = The queue to read from.
// pos = The position of the queue item to read. Default: 0
// n = The number of queue items to return. Default: undef (Return only the queue item at `pos`)
// Example:
// queue = [2,3,4,5,6,7,8,9];
// item = queue_peek(queue); // Returns: 2
// item2 = queue_peek(queue, 3); // Returns: 5
// list = queue_peek(queue, 4, 3); // Returns: [6,7,8]
function queue_peek(queue,pos=0,n=undef) =
assert(is_list(queue))
assert(is_num(pos))
assert(pos>=0)
let(queuesize = len(queue))
assert(queuesize>=pos, "queue underflow")
is_undef(n)? (
queue[pos]
) : (
assert(is_num(n))
assert(n>=0)
assert(n<queuesize-pos)
[for (i=[0:1:n-1]) queue[pos+i]]
);
// Function: queue_add()
// Usage:
// modified_queue = queue_add(queue,items);
// Description:
// Adds the given `items` onto the queue `queue`. Returns the modified queue.
// Arguments:
// queue = The queue to modify.
// items = A value or list of values to add to the queue.
// Example:
// queue = [4,9,2,3];
// queue2 = queue_add(queue,7); // Returns: [4,9,2,3,7]
// queue3 = queue_add(queue2,[6,1]); // Returns: [4,9,2,3,7,6,1]
// queue4 = queue_add(queue,[[5,8]]); // Returns: [4,9,2,3,[5,8]]
// queue5 = queue_add(queue,[[5,8],6,7]); // Returns: [4,9,2,3,[5,8],6,7]
// Example: Typical Producer and Consumer
// q2 = queue_add(q, "foo");
// ...
// val = queue_head(q2);
// q3 = queue_pop(q2);
function queue_add(queue,items) =
assert(is_list(queue))
is_list(items)? concat(queue, items) : concat(queue, [items]);
// Function: queue_pop()
// Usage:
// modified_queue = queue_pop(queue, [n]);
// Description:
// Removes `n` items from the head of the queue. Returns the modified queue.
// Arguments:
// queue = The queue to modify.
// n = The number of items to remove from the head of the queue. Default: 1
// Example:
// queue = [4,5,6,7,8,9];
// queue2 = queue_pop(queue); // Returns: [5,6,7,8,9]
// queue3 = queue_pop(queue2,n=3); // Returns: [8,9]
// Example: Typical Producer and Consumer
// q2 = queue_add(q, "foo");
// ...
// val = queue_head(q2);
// q3 = queue_pop(q2);
function queue_pop(queue,n=1) =
assert(is_list(queue))
assert(is_num(n))
assert(n>=0)
let(queuesize = len(queue))
assert(queuesize>=n, "queue underflow")
[for (i = [n:1:queuesize-1]) queue[i]];
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -1,191 +0,0 @@
//////////////////////////////////////////////////////////////////////
// LibFile: stacks.scad
// Stack data structure implementation.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/stacks.scad>
//////////////////////////////////////////////////////////////////////
// Section: Stack Data Structure
// A stack is a last-in-first-out collection of items. You can push items onto the top of the
// stack, or pop the top item off. While you can treat a stack as an opaque data type, using the
// functions below, it's simply implemented as a list. This means that you can use any list
// function to manipulate the stack. The last item in the list is the topmost stack item.
// The depth of an item is how far buried in the stack that item is. An item at depth 1 is the
// top-most stack item. An item at depth 3 is two items below the top-most stack item.
// Function: stack_init()
// Usage:
// stack = stack_init();
// Description:
// Creates an empty stack/list.
// Example:
// stack = stack_init(); // Return: []
function stack_init() = [];
// Function: stack_empty()
// Usage:
// if (stack_empty(stack)) ...
// Description:
// Returns true if the given stack is empty.
// Arguments:
// stack = The stack to test if empty.
// Example:
// stack = stack_init();
// is_empty = stack_empty(stack); // Returns: true
// stack2 = stack_push(stack, "foo");
// is_empty2 = stack_empty(stack2); // Returns: false
function stack_empty(stack) =
assert(is_list(stack))
len(stack)==0;
// Function: stack_depth()
// Usage:
// depth = stack_depth(stack);
// Description:
// Returns the depth of the given stack.
// Arguments:
// stack = The stack to get the depth of.
// Example:
// stack = stack_init();
// depth = stack_depth(stack); // Returns: 0
// stack2 = stack_push(stack, "foo");
// depth2 = stack_depth(stack2); // Returns: 1
// stack3 = stack_push(stack2, ["bar","baz","qux"]);
// depth3 = stack_depth(stack3); // Returns: 4
function stack_depth(stack) =
assert(is_list(stack))
len(stack);
// Function: stack_top()
// Usage:
// item = stack_top(stack);
// list = stack_top(stack,n);
// Description:
// If n is not given, returns the topmost item of the given stack.
// If n is given, returns a list of the `n` topmost items.
// Arguments:
// stack = The stack/list to get the top item(s) of.
// Example:
// stack = [4,5,6,7];
// item = stack_top(stack); // Returns: 7
// list = stack_top(stack,n=3); // Returns: [5,6,7]
function stack_top(stack,n=undef) =
assert(is_list(stack))
is_undef(n)? (
stack[len(stack)-1]
) : (
let(stacksize = len(stack))
assert(is_num(n))
assert(n>=0)
assert(stacksize>=n, "stack underflow")
[for (i=[0:1:n-1]) stack[stacksize-n+i]]
);
// Function: stack_peek()
// Usage:
// item = stack_peek(stack,[depth]);
// list = stack_peek(stack,depth,n);
// Description:
// If `n` is not given, returns the stack item at depth `depth`.
// If `n` is given, returns a list of the `n` stack items at and above depth `depth`.
// Arguments:
// stack = The stack to read from.
// depth = The depth of the stack item to read. Default: 0
// n = The number of stack items to return. Default: undef (Return only the stack item at `depth`)
// Example:
// stack = [2,3,4,5,6,7,8,9];
// item = stack_peek(stack); // Returns: 9
// item2 = stack_peek(stack, 3); // Returns: 7
// list = stack_peek(stack, 6, 4); // Returns: [4,5,6,7]
function stack_peek(stack,depth=0,n=undef) =
assert(is_list(stack))
assert(is_num(depth))
assert(depth>=0)
let(stacksize = len(stack))
assert(stacksize>=depth, "stack underflow")
is_undef(n)? (
stack[stacksize-depth-1]
) : (
assert(is_num(n))
assert(n>=0)
assert(n<=depth+1)
[for (i=[0:1:n-1]) stack[stacksize-1-depth+i]]
);
// Function: stack_push()
// Usage:
// modified_stack = stack_push(stack,items);
// Description:
// Pushes the given `items` onto the stack `stack`. Returns the modified stack.
// Arguments:
// stack = The stack to modify.
// items = A value or list of values to push onto the stack.
// Example:
// stack = [4,9,2,3];
// stack2 = stack_push(stack,7); // Returns: [4,9,2,3,7]
// stack3 = stack_push(stack2,[6,1]); // Returns: [4,9,2,3,7,6,1]
// stack4 = stack_push(stack,[[5,8]]); // Returns: [4,9,2,3,[5,8]]
// stack5 = stack_push(stack,[[5,8],6,7]); // Returns: [4,9,2,3,[5,8],6,7]
function stack_push(stack,items) =
assert(is_list(stack))
is_list(items)? concat(stack, items) : concat(stack, [items]);
// Function: stack_pop()
// Usage:
// modified_stack = stack_pop(stack, [n]);
// Description:
// Removes the `n` topmost items from the stack. Returns the modified stack.
// Arguments:
// stack = The stack to modify.
// n = The number of items to remove off the top of the stack. Default: 1
// Example:
// stack = [4,5,6,7,8,9];
// stack2 = stack_pop(stack); // Returns: [4,5,6,7,8]
// stack3 = stack_pop(stack2,n=3); // Returns: [4,5]
function stack_pop(stack,n=1) =
assert(is_list(stack))
assert(is_num(n))
assert(n>=0)
assert(len(stack)>=n, "stack underflow")
[for (i = [0:1:len(stack)-1-n]) stack[i]];
// Function: stack_rotate()
// Usage:
// modified_stack = stack_rotate(stack, [n]);
// Description:
// Rotates the top `abs(n)` stack items, and returns the modified stack.
// If `n` is positive, then the depth `n` stack item is rotated (left) to the top.
// If `n` is negative, then the top stack item is rotated (right) to depth `abs(n)`.
// Arguments:
// stack = The stack to modify.
// n = The number of stack items to rotate. If negative, reverse rotation direction. Default: 3
// Example:
// stack = [4,5,6,7,8];
// stack2 = stack_rotate(stack,3); // Returns: [4,5,7,8,6]
// stack3 = stack_rotate(stack2,-4); // Returns: [4,6,5,7,8]
function stack_rotate(stack,n=3) =
assert(is_list(stack))
let(stacksize = len(stack))
assert(stacksize>=n, "stack underflow")
n>=0? concat(
[for (i=[0:1:stacksize-1-n]) stack[i]],
[for (i=[0:1:n-2]) stack[stacksize-n+i+1]],
[stack[stacksize-n]]
) : concat(
[for (i=[0:1:stacksize-1+n]) stack[i]],
[stack[stacksize-1]],
[for (i=[0:1:-n-2]) stack[stacksize+n+i]]
);
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -1,77 +0,0 @@
include <../std.scad>
include <../queues.scad>
module test_queue_init() {
assert(queue_init()==[]);
}
test_queue_init();
module test_queue_empty() {
assert(queue_empty([]));
assert(!queue_empty([3]));
assert(!queue_empty([2,4,8]));
}
test_queue_empty();
module test_queue_size() {
assert(queue_size([]) == 0);
assert(queue_size([3]) == 1);
assert(queue_size([2,4,8]) == 3);
}
test_queue_size();
module test_queue_head() {
assert(queue_head([]) == undef);
assert(queue_head([3,5,7,9]) == 3);
assert(queue_head([3,5,7,9], 3) == [3,5,7]);
}
test_queue_head();
module test_queue_tail() {
assert(queue_tail([]) == undef);
assert(queue_tail([3,5,7,9]) == 9);
assert(queue_tail([3,5,7,9], 3) == [5,7,9]);
}
test_queue_tail();
module test_queue_peek() {
q = [8,5,4,3,2,3,7];
assert(queue_peek(q,0) == 8);
assert(queue_peek(q,2) == 4);
assert(queue_peek(q,2,1) == [4]);
assert(queue_peek(q,2,3) == [4,3,2]);
}
test_queue_peek();
module test_queue_add() {
q1 = queue_init();
q2 = queue_add(q1, "Foo");
assert(q2==["Foo"]);
q3 = queue_add(q2, "Bar");
assert(q3==["Foo","Bar"]);
q4 = queue_add(q3, "Baz");
assert(q4==["Foo","Bar","Baz"]);
}
test_queue_add();
module test_queue_pop() {
q = ["Foo", "Bar", "Baz", "Qux"];
q1 = queue_pop(q);
assert(q1 == ["Bar", "Baz", "Qux"]);
q2 = queue_pop(q,2);
assert(q2 == ["Baz", "Qux"]);
q3 = queue_pop(q,3);
assert(q3 == ["Qux"]);
}
test_queue_pop();
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -1,79 +0,0 @@
include <../std.scad>
include <../stacks.scad>
module test_stack_init() {
assert(stack_init()==[]);
}
test_stack_init();
module test_stack_empty() {
assert(stack_empty([]));
assert(!stack_empty([3]));
assert(!stack_empty([2,4,8]));
}
test_stack_empty();
module test_stack_depth() {
assert(stack_depth([]) == 0);
assert(stack_depth([3]) == 1);
assert(stack_depth([2,4,8]) == 3);
}
test_stack_depth();
module test_stack_top() {
assert(stack_top([]) == undef);
assert(stack_top([3,5,7,9]) == 9);
assert(stack_top([3,5,7,9], 3) == [5,7,9]);
}
test_stack_top();
module test_stack_peek() {
s = [8,5,4,3,2,3,7];
assert(stack_peek(s,0) == 7);
assert(stack_peek(s,2) == 2);
assert(stack_peek(s,2,1) == [2]);
assert(stack_peek(s,2,3) == [2,3,7]);
}
test_stack_peek();
module test_stack_push() {
s1 = stack_init();
s2 = stack_push(s1, "Foo");
assert(s2==["Foo"]);
s3 = stack_push(s2, "Bar");
assert(s3==["Foo","Bar"]);
s4 = stack_push(s3, "Baz");
assert(s4==["Foo","Bar","Baz"]);
}
test_stack_push();
module test_stack_pop() {
s = ["Foo", "Bar", "Baz", "Qux"];
s1 = stack_pop(s);
assert(s1 == ["Foo", "Bar", "Baz"]);
s2 = stack_pop(s,2);
assert(s2 == ["Foo", "Bar"]);
s3 = stack_pop(s,3);
assert(s3 == ["Foo"]);
}
test_stack_pop();
module test_stack_rotate() {
s = ["Foo", "Bar", "Baz", "Qux", "Quux"];
s1 = stack_rotate(s,4);
assert(s1 == ["Foo", "Baz", "Qux", "Quux", "Bar"]);
s2 = stack_rotate(s,-4);
assert(s2 == ["Foo", "Quux", "Bar", "Baz", "Qux"]);
}
test_stack_rotate();
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap