Merge pull request #1289 from BelfrySCAD/revarbat_dev

Enabled various shapes to not barf on zero or negative sizes.
This commit is contained in:
Revar Desmera 2023-10-10 16:35:29 -07:00 committed by GitHub
commit dcc76c2bce
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 104 additions and 75 deletions

View file

@ -3248,7 +3248,11 @@ function _find_anchor(anchor, geom) =
let( let(
size=geom[1], size2=geom[2], size=geom[1], size2=geom[2],
shift=point2d(geom[3]), axis=point3d(geom[4]), shift=point2d(geom[3]), axis=point3d(geom[4]),
override = geom[5](anchor), override = geom[5](anchor)
)
let(
size = [for (c = size) max(0,c)],
size2 = [for (c = size2) max(0,c)],
anch = rot(from=axis, to=UP, p=anchor), anch = rot(from=axis, to=UP, p=anchor),
offset = rot(from=axis, to=UP, p=offset), offset = rot(from=axis, to=UP, p=offset),
h = size.z, h = size.z,
@ -3259,8 +3263,8 @@ function _find_anchor(anchor, geom) =
pos = point3d(cp) + lerp(bot,top,u) + offset, pos = point3d(cp) + lerp(bot,top,u) + offset,
vecs = anchor==CENTER? [UP] vecs = anchor==CENTER? [UP]
: [ : [
if (anch.x!=0) unit(rot(from=UP, to=[(top-bot).x,0,h], p=[axy.x,0,0]), UP), if (anch.x!=0) unit(rot(from=UP, to=[(top-bot).x,0,max(0.01,h)], p=[axy.x,0,0]), UP),
if (anch.y!=0) unit(rot(from=UP, to=[0,(top-bot).y,h], p=[0,axy.y,0]), UP), if (anch.y!=0) unit(rot(from=UP, to=[0,(top-bot).y,max(0.01,h)], p=[0,axy.y,0]), UP),
if (anch.z!=0) unit([0,0,anch.z],UP) if (anch.z!=0) unit([0,0,anch.z],UP)
], ],
vec2 = anchor==CENTER? UP vec2 = anchor==CENTER? UP
@ -3385,10 +3389,12 @@ function _find_anchor(anchor, geom) =
size=geom[1], size2=geom[2], shift=geom[3], size=geom[1], size2=geom[2], shift=geom[3],
u = (anchor.y+1)/2, // 0<=u<=1 u = (anchor.y+1)/2, // 0<=u<=1
frpt = [size.x/2*anchor.x, -size.y/2], frpt = [size.x/2*anchor.x, -size.y/2],
bkpt = [size2/2*anchor.x+shift, size.y/2], bkpt = [size2/2*anchor.x+shift, size.y/2],
override = geom[4](anchor), override = geom[4](anchor),
pos = default(override[0],point2d(cp) + lerp(frpt, bkpt, u) + point2d(offset)), pos = override[0] != undef? override[0] :
svec = point3d(line_normal(bkpt,frpt)*anchor.x), point2d(cp) + lerp(frpt, bkpt, u) + point2d(offset),
svec = approx(bkpt,frpt)? [anchor.x,0,0] :
point3d(line_normal(bkpt,frpt)*anchor.x),
vec = is_def(override[1]) ? override[1] vec = is_def(override[1]) ? override[1]
: anchor.y == 0? ( anchor.x == 0? BACK : svec ) : anchor.y == 0? ( anchor.x == 0? BACK : svec )
: anchor.x == 0? [0,anchor.y,0] : anchor.x == 0? [0,anchor.y,0]
@ -3398,13 +3404,16 @@ function _find_anchor(anchor, geom) =
let( let(
anchor = unit(_force_anchor_2d(anchor),[0,0]), anchor = unit(_force_anchor_2d(anchor),[0,0]),
r = force_list(geom[1],2), r = force_list(geom[1],2),
pos = approx(anchor.x,0) ? [0,sign(anchor.y)*r.y] pos = approx(anchor.x,0)
: let( ? [0,sign(anchor.y)*r.y]
m = anchor.y/anchor.x, : let(
px = sign(anchor.x) * sqrt(1/(1/sqr(r.x) + m*m/sqr(r.y))) m = anchor.y/anchor.x,
) px = approx(min(r),0)? 0 :
[px,m*px], sign(anchor.x) * sqrt(1/(1/sqr(r.x) + m*m/sqr(r.y)))
vec = unit([r.y/r.x*pos.x, r.x/r.y*pos.y],BACK) )
[px,m*px],
vec = approx(min(r),0)? (approx(norm(anchor),0)? BACK : anchor) :
unit([r.y/r.x*pos.x, r.x/r.y*pos.y],BACK)
) [anchor, point2d(cp+offset)+pos, vec, 0] ) [anchor, point2d(cp+offset)+pos, vec, 0]
) : type == "rgn_isect"? ( //region ) : type == "rgn_isect"? ( //region
let( let(

View file

@ -151,16 +151,16 @@ function move_copies(a=[[0,0,0]],p=_NO_ARG) =
// See Also: move_copies(), ycopies(), zcopies(), line_copies(), grid_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // See Also: move_copies(), ycopies(), zcopies(), line_copies(), grid_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies()
// //
// Usage: // Usage:
// xcopies(spacing, [n], [sp]) CHILDREN; // xcopies(spacing, [n], [sp=]) CHILDREN;
// xcopies(l, [n], [sp]) CHILDREN; // xcopies(l=, [n=], [sp=]) CHILDREN;
// xcopies(LIST) CHILDREN; // xcopies(LIST) CHILDREN;
// Usage: As a function to translate points, VNF, or Bezier patches // Usage: As a function to translate points, VNF, or Bezier patches
// copies = xcopies(spacing, [n], [sp], p=); // copies = xcopies(spacing, [n], [sp=], p=);
// copies = xcopies(l, [n], [sp], p=); // copies = xcopies(l=, [n=], [sp=], p=);
// copies = xcopies(LIST, p=); // copies = xcopies(LIST, p=);
// Usage: Get Translation Matrices // Usage: Get Translation Matrices
// mats = xcopies(spacing, [n], [sp]); // mats = xcopies(spacing, [n], [sp=]);
// mats = xcopies(l, [n], [sp]); // mats = xcopies(l=, [n=], [sp=]);
// mats = xcopies(LIST); // mats = xcopies(LIST);
// Description: // Description:
// When called as a module, places `n` copies of the children along a line on the X axis. // When called as a module, places `n` copies of the children along a line on the X axis.
@ -168,10 +168,10 @@ function move_copies(a=[[0,0,0]],p=_NO_ARG) =
// When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`.
// //
// Arguments: // Arguments:
// ---
// spacing = Given a scalar, specifies a uniform spacing between copies. Given a list of scalars, each one gives a specific position along the line. (Default: 1.0) // spacing = Given a scalar, specifies a uniform spacing between copies. Given a list of scalars, each one gives a specific position along the line. (Default: 1.0)
// n = Number of copies to place. (Default: 2) // n = Number of copies to place. (Default: 2)
// l = Length to place copies over. // ---
// l = If given, the length to place copies over.
// sp = If given as a point, copies will be placed on a line to the right of starting position `sp`. If given as a scalar, copies will be placed on a line segment to the right of starting position `[sp,0,0]`. If not given, copies will be placed along a line segment that is centered at [0,0,0]. // sp = If given as a point, copies will be placed on a line to the right of starting position `sp`. If given as a scalar, copies will be placed on a line segment to the right of starting position `[sp,0,0]`. If not given, copies will be placed along a line segment that is centered at [0,0,0].
// p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function.
// //
@ -179,7 +179,6 @@ function move_copies(a=[[0,0,0]],p=_NO_ARG) =
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied. // `$idx` is set to the index number of each child being copied.
// //
//
// Examples: // Examples:
// xcopies(20) sphere(3); // xcopies(20) sphere(3);
// xcopies(20, n=3) sphere(3); // xcopies(20, n=3) sphere(3);
@ -237,16 +236,16 @@ function xcopies(spacing, n, l, sp, p=_NO_ARG) =
// See Also: move_copies(), xcopies(), zcopies(), line_copies(), grid_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // See Also: move_copies(), xcopies(), zcopies(), line_copies(), grid_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies()
// //
// Usage: // Usage:
// ycopies(spacing, [n], [sp]) CHILDREN; // ycopies(spacing, [n], [sp=]) CHILDREN;
// ycopies(l, [n], [sp]) CHILDREN; // ycopies(l=, [n=], [sp=]) CHILDREN;
// ycopies(LIST) CHILDREN; // ycopies(LIST) CHILDREN;
// Usage: As a function to translate points, VNF, or Bezier patches // Usage: As a function to translate points, VNF, or Bezier patches
// copies = ycopies(spacing, [n], [sp], p=); // copies = ycopies(spacing, [n], [sp=], p=);
// copies = ycopies(l, [n], [sp], p=); // copies = ycopies(l=, [n=], [sp=], p=);
// copies = ycopies(LIST, p=); // copies = ycopies(LIST, p=);
// Usage: Get Translation Matrices // Usage: Get Translation Matrices
// mats = ycopies(spacing, [n], [sp]); // mats = ycopies(spacing, [n], [sp=]);
// mats = ycopies(l, [n], [sp]); // mats = ycopies(l=, [n=], [sp=]);
// mats = ycopies(LIST); // mats = ycopies(LIST);
// Description: // Description:
// When called as a module, places `n` copies of the children along a line on the Y axis. // When called as a module, places `n` copies of the children along a line on the Y axis.
@ -254,10 +253,10 @@ function xcopies(spacing, n, l, sp, p=_NO_ARG) =
// When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`.
// //
// Arguments: // Arguments:
// ---
// spacing = Given a scalar, specifies a uniform spacing between copies. Given a list of scalars, each one gives a specific position along the line. (Default: 1.0) // spacing = Given a scalar, specifies a uniform spacing between copies. Given a list of scalars, each one gives a specific position along the line. (Default: 1.0)
// n = Number of copies to place on the line. (Default: 2) // n = Number of copies to place on the line. (Default: 2)
// l = Length to place copies over. // ---
// l = If given, the length to place copies over.
// sp = If given as a point, copies will be place on a line back from starting position `sp`. If given as a scalar, copies will be placed on a line back from starting position `[0,sp,0]`. If not given, copies will be placed along a line that is centered at [0,0,0]. // sp = If given as a point, copies will be place on a line back from starting position `sp`. If given as a scalar, copies will be placed on a line back from starting position `[0,sp,0]`. If not given, copies will be placed along a line that is centered at [0,0,0].
// p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function.
// //
@ -265,7 +264,6 @@ function xcopies(spacing, n, l, sp, p=_NO_ARG) =
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied. // `$idx` is set to the index number of each child being copied.
// //
//
// Examples: // Examples:
// ycopies(20) sphere(3); // ycopies(20) sphere(3);
// ycopies(20, n=3) sphere(3); // ycopies(20, n=3) sphere(3);
@ -323,16 +321,16 @@ function ycopies(spacing, n, l, sp, p=_NO_ARG) =
// See Also: move_copies(), xcopies(), ycopies(), line_copies(), grid_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // See Also: move_copies(), xcopies(), ycopies(), line_copies(), grid_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies()
// //
// Usage: // Usage:
// zcopies(spacing, [n], [sp]) CHILDREN; // zcopies(spacing, [n], [sp=]) CHILDREN;
// zcopies(l, [n], [sp]) CHILDREN; // zcopies(l=, [n=], [sp=]) CHILDREN;
// zcopies(LIST) CHILDREN; // zcopies(LIST) CHILDREN;
// Usage: As a function to translate points, VNF, or Bezier patches // Usage: As a function to translate points, VNF, or Bezier patches
// copies = zcopies(spacing, [n], [sp], p=); // copies = zcopies(spacing, [n], [sp=], p=);
// copies = zcopies(l, [n], [sp], p=); // copies = zcopies(l=, [n=], [sp=], p=);
// copies = zcopies(LIST, p=); // copies = zcopies(LIST, p=);
// Usage: Get Translation Matrices // Usage: Get Translation Matrices
// mats = zcopies(spacing, [n], [sp]); // mats = zcopies(spacing, [n], [sp=]);
// mats = zcopies(l, [n], [sp]); // mats = zcopies(l=, [n=], [sp=]);
// mats = zcopies(LIST); // mats = zcopies(LIST);
// Description: // Description:
// When called as a module, places `n` copies of the children along a line on the Z axis. // When called as a module, places `n` copies of the children along a line on the Z axis.
@ -340,10 +338,10 @@ function ycopies(spacing, n, l, sp, p=_NO_ARG) =
// When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`.
// //
// Arguments: // Arguments:
// ---
// spacing = Given a scalar, specifies a uniform spacing between copies. Given a list of scalars, each one gives a specific position along the line. (Default: 1.0) // spacing = Given a scalar, specifies a uniform spacing between copies. Given a list of scalars, each one gives a specific position along the line. (Default: 1.0)
// n = Number of copies to place. (Default: 2) // n = Number of copies to place. (Default: 2)
// l = Length to place copies over. // ---
// l = If given, the length to place copies over.
// sp = If given as a point, copies will be placed on a line up from starting position `sp`. If given as a scalar, copies will be placed on a line up from starting position `[0,0,sp]`. If not given, copies will be placed on a line that is centered at [0,0,0]. // sp = If given as a point, copies will be placed on a line up from starting position `sp`. If given as a scalar, copies will be placed on a line up from starting position `[0,0,sp]`. If not given, copies will be placed on a line that is centered at [0,0,0].
// p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function.
// //
@ -351,7 +349,6 @@ function ycopies(spacing, n, l, sp, p=_NO_ARG) =
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied. // `$idx` is set to the index number of each child being copied.
// //
//
// Examples: // Examples:
// zcopies(20) sphere(3); // zcopies(20) sphere(3);
// zcopies(20, n=3) sphere(3); // zcopies(20, n=3) sphere(3);
@ -478,7 +475,6 @@ function zcopies(spacing, n, l, sp, p=_NO_ARG) =
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied. // `$idx` is set to the index number of each child being copied.
// //
//
// Examples: // Examples:
// line_copies(10) sphere(d=1.5); // line_copies(10) sphere(d=1.5);
// line_copies(10, n=5) sphere(d=3); // line_copies(10, n=5) sphere(d=3);
@ -592,7 +588,6 @@ function line_copies(spacing, n, l, p1, p2, p=_NO_ARG) =
// `$col` is set to the integer column number for each child. // `$col` is set to the integer column number for each child.
// `$row` is set to the integer row number for each child. // `$row` is set to the integer row number for each child.
// //
//
// Examples: // Examples:
// grid_copies(size=50, spacing=10) cylinder(d=10, h=1); // grid_copies(size=50, spacing=10) cylinder(d=10, h=1);
// grid_copies(size=50, spacing=[10,15]) cylinder(d=10, h=1); // grid_copies(size=50, spacing=[10,15]) cylinder(d=10, h=1);
@ -851,7 +846,7 @@ function grid_copies(spacing, n, size, stagger=false, inside=undef, nonzero, p=_
// rot_copies(n=6, v=DOWN+BACK, delta=[20,0,0], subrot=false) // rot_copies(n=6, v=DOWN+BACK, delta=[20,0,0], subrot=false)
// yrot(90) cylinder(h=20, r1=5, r2=0); // yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
module rot_copies(rots=[], v=undef, cp=[0,0,0], n, sa=0, offset=0, delta=[0,0,0], subrot=true) module rot_copies(rots=[], v, cp=[0,0,0], n, sa=0, offset=0, delta=[0,0,0], subrot=true)
{ {
req_children($children); req_children($children);
sang = sa + offset; sang = sa + offset;

View file

@ -51,21 +51,26 @@ use <builtins.scad>
function square(size=1, center, anchor, spin=0) = function square(size=1, center, anchor, spin=0) =
let( let(
anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]), anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]),
size = is_num(size)? [size,size] : point2d(size), size = is_num(size)? [size,size] : point2d(size)
)
assert(all_positive(size), "All components of size must be positive.")
let(
path = [ path = [
[ size.x,-size.y], [ size.x,-size.y],
[-size.x,-size.y], [-size.x,-size.y],
[-size.x, size.y], [-size.x, size.y],
[ size.x, size.y] [ size.x, size.y],
] / 2 ] / 2
) reorient(anchor,spin, two_d=true, size=size, p=path); ) reorient(anchor,spin, two_d=true, size=size, p=path);
module square(size=1, center, anchor, spin) { module square(size=1, center, anchor, spin) {
anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]); anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]);
size = is_num(size)? [size,size] : point2d(size); rsize = is_num(size)? [size,size] : point2d(size);
size = [for (c = rsize) max(0,c)];
attachable(anchor,spin, two_d=true, size=size) { attachable(anchor,spin, two_d=true, size=size) {
_square(size, center=true); if (all_positive(size))
_square(size, center=true);
children(); children();
} }
} }
@ -127,8 +132,13 @@ module square(size=1, center, anchor, spin) {
// move_copies(path) color("blue") circle(d=2,$fn=8); // move_copies(path) color("blue") circle(d=2,$fn=8);
module rect(size=1, rounding=0, atype="box", chamfer=0, anchor=CENTER, spin=0) { module rect(size=1, rounding=0, atype="box", chamfer=0, anchor=CENTER, spin=0) {
errchk = assert(in_list(atype, ["box", "perim"])); errchk = assert(in_list(atype, ["box", "perim"]));
size = force_list(size,2); size = [for (c = force_list(size,2)) max(0,c)];
if (rounding==0 && chamfer==0) { if (!all_positive(size)) {
attachable(anchor,spin, two_d=true, size=size) {
union();
children();
}
} else if (rounding==0 && chamfer==0) {
attachable(anchor, spin, two_d=true, size=size) { attachable(anchor, spin, two_d=true, size=size) {
square(size, center=true); square(size, center=true);
children(); children();
@ -138,8 +148,8 @@ module rect(size=1, rounding=0, atype="box", chamfer=0, anchor=CENTER, spin=0) {
pts = pts_over[0]; pts = pts_over[0];
override = pts_over[1]; override = pts_over[1];
attachable(anchor, spin, two_d=true, size=size,override=override) { attachable(anchor, spin, two_d=true, size=size,override=override) {
polygon(pts); polygon(pts);
children(); children();
} }
} }
} }
@ -153,18 +163,19 @@ function rect(size=1, rounding=0, chamfer=0, atype="box", anchor=CENTER, spin=0,
assert(in_list(atype, ["box", "perim"])) assert(in_list(atype, ["box", "perim"]))
let( let(
anchor=_force_anchor_2d(anchor), anchor=_force_anchor_2d(anchor),
size = force_list(size,2), size = [for (c = force_list(size,2)) max(0,c)],
chamfer = force_list(chamfer,4), chamfer = force_list(chamfer,4),
rounding = force_list(rounding,4) rounding = force_list(rounding,4)
) )
assert(all_nonnegative(size), "All components of size must be >=0")
all_zero(concat(chamfer,rounding),0) ? all_zero(concat(chamfer,rounding),0) ?
let( let(
path = [ path = [
[ size.x/2, -size.y/2], [ size.x/2, -size.y/2],
[-size.x/2, -size.y/2], [-size.x/2, -size.y/2],
[-size.x/2, size.y/2], [-size.x/2, size.y/2],
[ size.x/2, size.y/2] [ size.x/2, size.y/2],
] ]
) )
rot(spin, p=move(-v_mul(anchor,size/2), p=path)) rot(spin, p=move(-v_mul(anchor,size/2), p=path))
: :
@ -277,7 +288,10 @@ function circle(r, d, points, corner, anchor=CENTER, spin=0) =
r = get_radius(r=r, d=d, dflt=1) r = get_radius(r=r, d=d, dflt=1)
) [cp, r], ) [cp, r],
cp = data[0], cp = data[0],
r = data[1], r = data[1]
)
assert(r>0, "Radius/diameter must be positive")
let(
sides = segs(r), sides = segs(r),
path = [for (i=[0:1:sides-1]) let(a=360-i*360/sides) r*[cos(a),sin(a)]+cp] path = [for (i=[0:1:sides-1]) let(a=360-i*360/sides) r*[cos(a),sin(a)]+cp]
) reorient(anchor,spin, two_d=true, r=r, p=path); ) reorient(anchor,spin, two_d=true, r=r, p=path);
@ -290,7 +304,7 @@ module circle(r, d, points, corner, anchor=CENTER, spin=0) {
r = c[1]; r = c[1];
translate(cp) { translate(cp) {
attachable(anchor,spin, two_d=true, r=r) { attachable(anchor,spin, two_d=true, r=r) {
_circle(r=r); if (r>0) _circle(r=r);
children(); children();
} }
} }
@ -301,14 +315,14 @@ module circle(r, d, points, corner, anchor=CENTER, spin=0) {
cp = c[0]; cp = c[0];
translate(cp) { translate(cp) {
attachable(anchor,spin, two_d=true, r=r) { attachable(anchor,spin, two_d=true, r=r) {
_circle(r=r); if (r>0) _circle(r=r);
children(); children();
} }
} }
} else { } else {
r = get_radius(r=r, d=d, dflt=1); r = get_radius(r=r, d=d, dflt=1);
attachable(anchor,spin, two_d=true, r=r) { attachable(anchor,spin, two_d=true, r=r) {
_circle(r=r); if (r>0) _circle(r=r);
children(); children();
} }
} }
@ -485,18 +499,26 @@ function ellipse(r, d, realign=false, circum=false, uniform=false, anchor=CENTER
r = force_list(get_radius(r=r, d=d, dflt=1),2), r = force_list(get_radius(r=r, d=d, dflt=1),2),
sides = segs(max(r)) sides = segs(max(r))
) )
uniform ? assert(!circum, "Circum option not allowed when \"uniform\" is true") assert(all_positive(r), "All components of the radius must be positive.")
reorient(anchor,spin,two_d=true,r=[r.x,r.y], uniform
p=realign ? reverse(_ellipse_refine_realign(r.x,r.y,sides)) ? assert(!circum, "Circum option not allowed when \"uniform\" is true")
: reverse_polygon(_ellipse_refine(r.x,r.y,sides))) reorient(anchor,spin,
: two_d=true, r=[r.x,r.y],
let( p=realign
offset = realign? 180/sides : 0, ? reverse(_ellipse_refine_realign(r.x,r.y,sides))
sc = circum? (1 / cos(180/sides)) : 1, : reverse_polygon(_ellipse_refine(r.x,r.y,sides))
rx = r.x * sc, )
ry = r.y * sc, : let(
pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) [rx*cos(a), ry*sin(a)]] offset = realign? 180/sides : 0,
) reorient(anchor,spin, two_d=true, r=[rx,ry], p=pts); sc = circum? (1 / cos(180/sides)) : 1,
rx = r.x * sc,
ry = r.y * sc,
pts = [
for (i=[0:1:sides-1])
let (a = 360-offset-i*360/sides)
[rx*cos(a), ry*sin(a)]
]
) reorient(anchor,spin, two_d=true, r=[rx,ry], p=pts);
// Section: Polygons // Section: Polygons

View file

@ -67,7 +67,10 @@ module cube(size=1, center, anchor, spin=0, orient=UP)
function cube(size=1, center, anchor, spin=0, orient=UP) = function cube(size=1, center, anchor, spin=0, orient=UP) =
let( let(
siz = scalar_vec3(size), siz = scalar_vec3(size)
)
assert(all_positive(siz), "All size components must be positive.")
let(
anchor = get_anchor(anchor, center, -[1,1,1], -[1,1,1]), anchor = get_anchor(anchor, center, -[1,1,1], -[1,1,1]),
unscaled = [ unscaled = [
[-1,-1,-1],[1,-1,-1],[1,1,-1],[-1,1,-1], [-1,-1,-1],[1,-1,-1],[1,1,-1],[-1,1,-1],
@ -332,7 +335,7 @@ module cuboid(
rounding = approx(rounding,0) ? undef : rounding; rounding = approx(rounding,0) ? undef : rounding;
checks = checks =
assert(is_vector(size,3)) assert(is_vector(size,3))
assert(all_positive(size)) assert(all_nonnegative(size), "All components of size= must be >=0")
assert(is_undef(chamfer) || is_finite(chamfer),"chamfer must be a finite value") assert(is_undef(chamfer) || is_finite(chamfer),"chamfer must be a finite value")
assert(is_undef(rounding) || is_finite(rounding),"rounding must be a finite value") assert(is_undef(rounding) || is_finite(rounding),"rounding must be a finite value")
assert(is_undef(rounding) || is_undef(chamfer), "Cannot specify nonzero value for both chamfer and rounding") assert(is_undef(rounding) || is_undef(chamfer), "Cannot specify nonzero value for both chamfer and rounding")