From dd9b1976780b79eb6eda7ace1a03fe82bc294518 Mon Sep 17 00:00:00 2001 From: Adrian Mariano Date: Mon, 10 Jan 2022 21:00:39 -0500 Subject: [PATCH] move linear_sweep and spiral_sweep to skin.scad --- bottlecaps.scad | 14 +-- mutators.scad | 93 -------------------- regions.scad | 120 -------------------------- skin.scad | 225 ++++++++++++++++++++++++++++++++++++++++++++++++ threading.scad | 16 ++-- 5 files changed, 240 insertions(+), 228 deletions(-) diff --git a/bottlecaps.scad b/bottlecaps.scad index 00e715a..a91b9ea 100644 --- a/bottlecaps.scad +++ b/bottlecaps.scad @@ -117,7 +117,7 @@ module pco1810_neck(wall=2, anchor="support-ring", spin=0, orient=UP) pitch=thread_pitch, thread_depth=thread_h+0.1, flank_angle=flank_angle, - twist=810, + turns=810/360, higbee=thread_h*2, anchor=TOP ); @@ -195,7 +195,7 @@ module pco1810_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP) } up(wall) cyl(d=cap_id, h=tamper_ring_h+wall, anchor=BOTTOM); } - up(wall+2) thread_helix(d=thread_od-thread_depth*2, pitch=thread_pitch, thread_depth=thread_depth, flank_angle=flank_angle, twist=810, higbee=thread_depth, internal=true, anchor=BOTTOM); + up(wall+2) thread_helix(d=thread_od-thread_depth*2, pitch=thread_pitch, thread_depth=thread_depth, flank_angle=flank_angle, twist=810/360, higbee=thread_depth, internal=true, anchor=BOTTOM); } children(); } @@ -310,7 +310,7 @@ module pco1881_neck(wall=2, anchor="support-ring", spin=0, orient=UP) pitch=thread_pitch, thread_depth=thread_h+0.1, flank_angle=flank_angle, - twist=650, + twist=650/360, higbee=thread_h*2, anchor=TOP ); @@ -379,7 +379,7 @@ module pco1881_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP) } up(wall) cyl(d=28.58, h=11.2+wall, anchor=BOTTOM); } - up(wall+2) thread_helix(d=25.5, pitch=2.7, thread_depth=1.6, flank_angle=15, twist=650, higbee=1.6, internal=true, anchor=BOTTOM); + up(wall+2) thread_helix(d=25.5, pitch=2.7, thread_depth=1.6, flank_angle=15, twist=650/360, higbee=1.6, internal=true, anchor=BOTTOM); } children(); } @@ -482,7 +482,7 @@ module generic_bottle_neck( pitch = thread_pitch, thread_depth = thread_h + 0.1 * diamMagMult, flank_angle = flank_angle, - twist = 360 * (height - pitch - lip_roundover_r) * .6167 / pitch, + turns = (height - pitch - lip_roundover_r) * .6167 / pitch, higbee = thread_h * 2, anchor = TOP ); @@ -590,7 +590,7 @@ module generic_bottle_cap( } difference(){ up(wall + pitch / 2) { - thread_helix(d = neckOuterDTol, pitch = pitch, thread_depth = threadDepth, flank_angle = flank_angle, twist = 360 * ((height - pitch) / pitch), higbee = threadDepth, internal = true, anchor = BOTTOM); + thread_helix(d = neckOuterDTol, pitch = pitch, thread_depth = threadDepth, flank_angle = flank_angle, turns = ((height - pitch) / pitch), higbee = threadDepth, internal = true, anchor = BOTTOM); } } } @@ -1130,7 +1130,7 @@ module sp_neck(diam,type,wall,id,style="L",bead=false, anchor, spin, orient) up((H+extra_bot)/2){ difference(){ union(){ - thread_helix(d=T-.01, profile=profile, pitch = INCH/tpi, twist=twist+2*higang, higbee=higlen, anchor=TOP); + thread_helix(d=T-.01, profile=profile, pitch = INCH/tpi, turns=(twist+2*higang)/360, higbee=higlen, anchor=TOP); cylinder(d=T-depth*2,l=H,anchor=TOP); if (bead) down(bead_shift) diff --git a/mutators.scad b/mutators.scad index 5e75517..c0fc682 100644 --- a/mutators.scad +++ b/mutators.scad @@ -348,99 +348,6 @@ module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) { -// Module: spiral_sweep() -// Description: -// Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path -// of a given radius, height and twist. The origin in the profile traces out the helix of the specified radius. -// If twist is positive the path will be right-handed; if twist is negative the path will be left-handed. -// . -// Higbee specifies tapering applied to the ends of the extrusion and is given as the linear distance -// over which to taper. -// Arguments: -// poly = Array of points of a polygon path, to be extruded. -// h = height of the spiral to extrude along. -// r = Radius of the spiral to extrude along. Default: 50 -// twist = number of degrees of rotation to spiral up along height. -// --- -// d = Diameter of the spiral to extrude along. -// higbee = Length to taper thread ends over. -// higbee1 = Taper length at start -// higbee2 = Taper length at end -// internal = direction to taper the threads with higbee. If true threads taper outward; if false they taper inward. Default: false -// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` -// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` -// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` -// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`. -// Example: -// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]]; -// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36); -module spiral_sweep(poly, h, r, twist=360, higbee, center, r1, r2, d, d1, d2, higbee1, higbee2, internal=false, anchor, spin=0, orient=UP) { - higsample = 10; // Oversample factor for higbee tapering - dummy1=assert(is_num(twist) && twist != 0); - bounds = pointlist_bounds(poly); - yctr = (bounds[0].y+bounds[1].y)/2; - xmin = bounds[0].x; - xmax = bounds[1].x; - poly = path3d(clockwise_polygon(poly)); - anchor = get_anchor(anchor,center,BOT,BOT); - r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=50); - r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=50); - sides = segs(max(r1,r2)); - dir = sign(twist); - ang_step = 360/sides*dir; - anglist = [for(ang = [0:ang_step:twist-EPSILON]) ang, - twist]; - higbee1 = first_defined([higbee1, higbee, 0]); - higbee2 = first_defined([higbee2, higbee, 0]); - higang1 = 360 * higbee1 / (2 * r1 * PI); - higang2 = 360 * higbee2 / (2 * r2 * PI); - dummy2=assert(higbee1>=0 && higbee2>=0) - assert(higang1 < dir*twist/2,"Higbee1 is more than half the threads") - assert(higang2 < dir*twist/2,"Higbee2 is more than half the threads"); - function polygon_r(N,theta) = - let( alpha = 360/N ) - cos(alpha/2)/(cos(posmod(theta,alpha)-alpha/2)); - higofs = pow(0.05,2); // Smallest hig scale is the square root of this value - function taperfunc(x) = sqrt((1-higofs)*x+higofs); - interp_ang = [ - for(i=idx(anglist,e=-2)) - each lerpn(anglist[i],anglist[i+1], - (higang1>0 && higang1>dir*anglist[i+1] - || (higang2>0 && higang2>dir*(twist-anglist[i]))) ? ceil((anglist[i+1]-anglist[i])/ang_step*higsample) - : 1, - endpoint=false), - last(anglist) - ]; - skewmat = affine3d_skew_xz(xa=atan2(r2-r1,h)); - points = [ - for (a = interp_ang) let ( - hsc = dir*a0?true:false, - style=higbee1>0 || higbee2>0 ? "quincunx" : "alt" - ); - - attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) { - vnf_polyhedron(vnf, convexity=ceil(2*dir*twist/360)); - children(); - } -} - - - // Module: path_extrude() // Description: // Extrudes 2D children along a 3D path. This may be slow. diff --git a/regions.scad b/regions.scad index 4f686f9..e9cd822 100644 --- a/regions.scad +++ b/regions.scad @@ -591,126 +591,6 @@ function region_parts(region) = ]; -// Section: Region Extrusion and VNFs - - - -// Function&Module: linear_sweep() -// Usage: -// linear_sweep(region, height, [center], [slices], [twist], [scale], [style], [convexity]) {attachments}; -// Description: -// If called as a module, creates a polyhedron that is the linear extrusion of the given 2D region or polygon. -// If called as a function, returns a VNF that can be used to generate a polyhedron of the linear extrusion -// of the given 2D region or polygon. The benefit of using this, over using `linear_extrude region(rgn)` is -// that it supports `anchor`, `spin`, `orient` and attachments. You can also make more refined -// twisted extrusions by using `maxseg` to subsample flat faces. -// Note that the center option centers vertically using the named anchor "zcenter" whereas -// `anchor=CENTER` centers the entire shape relative to -// the shape's centroid, or other centerpoint you specify. The centerpoint can be "centroid", "mean", "box" or -// a custom point location. -// Arguments: -// region = The 2D [Region](regions.scad) or polygon that is to be extruded. -// height = The height to extrude the region. Default: 1 -// center = If true, the created polyhedron will be vertically centered. If false, it will be extruded upwards from the XY plane. Default: `false` -// slices = The number of slices to divide the shape into along the Z axis, to allow refinement of detail, especially when working with a twist. Default: `twist/5` -// maxseg = If given, then any long segments of the region will be subdivided to be shorter than this length. This can refine twisting flat faces a lot. Default: `undef` (no subsampling) -// twist = The number of degrees to rotate the shape clockwise around the Z axis, as it rises from bottom to top. Default: 0 -// scale = The amount to scale the shape, from bottom to top. Default: 1 -// style = The style to use when triangulating the surface of the object. Valid values are `"default"`, `"alt"`, or `"quincunx"`. -// convexity = Max number of surfaces any single ray could pass through. Module use only. -// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"` -// atype = Set to "hull" or "intersect" to select anchor type. Default: "hull" -// cp = Centerpoint for determining intersection anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid" -// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` -// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` -// Example: Extruding a Compound Region. -// rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)]; -// rgn2 = [square(30,center=false)]; -// rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))]; -// mrgn = union(rgn1,rgn2); -// orgn = difference(mrgn,rgn3); -// linear_sweep(orgn,height=20,convexity=16); -// Example: With Twist, Scale, Slices and Maxseg. -// rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)]; -// rgn2 = [square(30,center=false)]; -// rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))]; -// mrgn = union(rgn1,rgn2); -// orgn = difference(mrgn,rgn3); -// linear_sweep(orgn,height=50,maxseg=2,slices=40,twist=180,scale=0.5,convexity=16); -// Example: Anchors on an Extruded Region -// rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)]; -// rgn2 = [square(30,center=false)]; -// rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))]; -// mrgn = union(rgn1,rgn2); -// orgn = difference(mrgn,rgn3); -// linear_sweep(orgn,height=20,convexity=16) show_anchors(); -module linear_sweep(region, height=1, center, twist=0, scale=1, slices, maxseg, style="default", convexity, - spin=0, orient=UP, cp="centroid", anchor="origin", atype="hull") { - region = force_region(region); - dummy=assert(is_region(region),"Input is not a region"); - anchor = center ? "zcenter" : anchor; - anchors = [named_anchor("zcenter", [0,0,height/2], UP)]; - vnf = linear_sweep( - region, height=height, - twist=twist, scale=scale, - slices=slices, maxseg=maxseg, - style=style - ); - attachable(anchor,spin,orient, cp=cp, region=region, h=height, extent=atype=="hull", anchors=anchors) { - vnf_polyhedron(vnf, convexity=convexity); - children(); - } -} - - -function linear_sweep(region, height=1, center, twist=0, scale=1, slices, - maxseg, style="default", cp="centroid", atype="hull", anchor, spin=0, orient=UP) = - let( - region = force_region(region) - ) - assert(is_region(region), "Input is not a region") - let( - anchor = center ? "zcenter" : anchor, - anchors = [named_anchor("zcenter", [0,0,height/2], UP)], - regions = region_parts(region), - slices = default(slices, floor(twist/5+1)), - step = twist/slices, - hstep = height/slices, - trgns = [ - for (rgn=regions) [ - for (path=rgn) let( - p = cleanup_path(path), - path = is_undef(maxseg)? p : [ - for (seg=pair(p,true)) each - let(steps=ceil(norm(seg.y-seg.x)/maxseg)) - lerpn(seg.x, seg.y, steps, false) - ] - ) - rot(twist, p=scale([scale,scale],p=path)) - ] - ], - vnf = vnf_join([ - for (rgn = regions) - for (pathnum = idx(rgn)) let( - p = cleanup_path(rgn[pathnum]), - path = is_undef(maxseg)? p : [ - for (seg=pair(p,true)) each - let(steps=ceil(norm(seg.y-seg.x)/maxseg)) - lerpn(seg.x, seg.y, steps, false) - ], - verts = [ - for (i=[0:1:slices]) let( - sc = lerp(1, scale, i/slices), - ang = i * step, - h = i * hstep //- height/2 - ) scale([sc,sc,1], p=rot(ang, p=path3d(path,h))) - ] - ) vnf_vertex_array(verts, caps=false, col_wrap=true, style=style), - for (rgn = regions) vnf_from_region(rgn, ident(4), reverse=true), - for (rgn = trgns) vnf_from_region(rgn, up(height), reverse=false) - ]) - ) reorient(anchor,spin,orient, cp=cp, vnf=vnf, extent=atype=="hull", p=vnf, anchors=anchors); - // Section: Offset and 2D Boolean Set Operations diff --git a/skin.scad b/skin.scad index 03cc471..1f19886 100644 --- a/skin.scad +++ b/skin.scad @@ -501,6 +501,231 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close reorient(anchor,spin,orient,vnf=vnf,p=vnf,extent=atype=="hull",cp=cp); + +// Function&Module: linear_sweep() +// Usage: +// linear_sweep(region, height, [center], [slices], [twist], [scale], [style], [convexity]) {attachments}; +// Description: +// If called as a module, creates a polyhedron that is the linear extrusion of the given 2D region or polygon. +// If called as a function, returns a VNF that can be used to generate a polyhedron of the linear extrusion +// of the given 2D region or polygon. The benefit of using this, over using `linear_extrude region(rgn)` is +// that it supports `anchor`, `spin`, `orient` and attachments. You can also make more refined +// twisted extrusions by using `maxseg` to subsample flat faces. +// Note that the center option centers vertically using the named anchor "zcenter" whereas +// `anchor=CENTER` centers the entire shape relative to +// the shape's centroid, or other centerpoint you specify. The centerpoint can be "centroid", "mean", "box" or +// a custom point location. +// Arguments: +// region = The 2D [Region](regions.scad) or polygon that is to be extruded. +// height = The height to extrude the region. Default: 1 +// center = If true, the created polyhedron will be vertically centered. If false, it will be extruded upwards from the XY plane. Default: `false` +// slices = The number of slices to divide the shape into along the Z axis, to allow refinement of detail, especially when working with a twist. Default: `twist/5` +// maxseg = If given, then any long segments of the region will be subdivided to be shorter than this length. This can refine twisting flat faces a lot. Default: `undef` (no subsampling) +// twist = The number of degrees to rotate the shape clockwise around the Z axis, as it rises from bottom to top. Default: 0 +// scale = The amount to scale the shape, from bottom to top. Default: 1 +// style = The style to use when triangulating the surface of the object. Valid values are `"default"`, `"alt"`, or `"quincunx"`. +// convexity = Max number of surfaces any single ray could pass through. Module use only. +// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"` +// atype = Set to "hull" or "intersect" to select anchor type. Default: "hull" +// cp = Centerpoint for determining intersection anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid" +// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` +// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` +// Example: Extruding a Compound Region. +// rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)]; +// rgn2 = [square(30,center=false)]; +// rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))]; +// mrgn = union(rgn1,rgn2); +// orgn = difference(mrgn,rgn3); +// linear_sweep(orgn,height=20,convexity=16); +// Example: With Twist, Scale, Slices and Maxseg. +// rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)]; +// rgn2 = [square(30,center=false)]; +// rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))]; +// mrgn = union(rgn1,rgn2); +// orgn = difference(mrgn,rgn3); +// linear_sweep(orgn,height=50,maxseg=2,slices=40,twist=180,scale=0.5,convexity=16); +// Example: Anchors on an Extruded Region +// rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)]; +// rgn2 = [square(30,center=false)]; +// rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))]; +// mrgn = union(rgn1,rgn2); +// orgn = difference(mrgn,rgn3); +// linear_sweep(orgn,height=20,convexity=16) show_anchors(); +module linear_sweep(region, height=1, center, twist=0, scale=1, slices, maxseg, style="default", convexity, + spin=0, orient=UP, cp="centroid", anchor="origin", atype="hull") { + region = force_region(region); + dummy=assert(is_region(region),"Input is not a region"); + anchor = center ? "zcenter" : anchor; + anchors = [named_anchor("zcenter", [0,0,height/2], UP)]; + vnf = linear_sweep( + region, height=height, + twist=twist, scale=scale, + slices=slices, maxseg=maxseg, + style=style + ); + attachable(anchor,spin,orient, cp=cp, region=region, h=height, extent=atype=="hull", anchors=anchors) { + vnf_polyhedron(vnf, convexity=convexity); + children(); + } +} + + +function linear_sweep(region, height=1, center, twist=0, scale=1, slices, + maxseg, style="default", cp="centroid", atype="hull", anchor, spin=0, orient=UP) = + let( + region = force_region(region) + ) + assert(is_region(region), "Input is not a region") + let( + anchor = center ? "zcenter" : anchor, + anchors = [named_anchor("zcenter", [0,0,height/2], UP)], + regions = region_parts(region), + slices = default(slices, floor(twist/5+1)), + step = twist/slices, + hstep = height/slices, + trgns = [ + for (rgn=regions) [ + for (path=rgn) let( + p = cleanup_path(path), + path = is_undef(maxseg)? p : [ + for (seg=pair(p,true)) each + let(steps=ceil(norm(seg.y-seg.x)/maxseg)) + lerpn(seg.x, seg.y, steps, false) + ] + ) + rot(twist, p=scale([scale,scale],p=path)) + ] + ], + vnf = vnf_join([ + for (rgn = regions) + for (pathnum = idx(rgn)) let( + p = cleanup_path(rgn[pathnum]), + path = is_undef(maxseg)? p : [ + for (seg=pair(p,true)) each + let(steps=ceil(norm(seg.y-seg.x)/maxseg)) + lerpn(seg.x, seg.y, steps, false) + ], + verts = [ + for (i=[0:1:slices]) let( + sc = lerp(1, scale, i/slices), + ang = i * step, + h = i * hstep //- height/2 + ) scale([sc,sc,1], p=rot(ang, p=path3d(path,h))) + ] + ) vnf_vertex_array(verts, caps=false, col_wrap=true, style=style), + for (rgn = regions) vnf_from_region(rgn, ident(4), reverse=true), + for (rgn = trgns) vnf_from_region(rgn, up(height), reverse=false) + ]) + ) reorient(anchor,spin,orient, cp=cp, vnf=vnf, extent=atype=="hull", p=vnf, anchors=anchors); + + + +// Function&Module: spiral_sweep() +// Usage: +// spiral_sweep(poly, h, r, turns, [higbee], [center], [r1], [r2], [d], [d1], [d2], [higbee1], [higbee2], [internal], [anchor], [spin], [orient]); +// vnf = spiral_sweep(poly, h, r, turns, ...); +// Description: +// Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path +// of a given radius, height and degrees of rotation. The origin in the profile traces out the helix of the specified radius. +// If turns is positive the path will be right-handed; if turns is negative the path will be left-handed. +// . +// Higbee specifies tapering applied to the ends of the extrusion and is given as the linear distance +// over which to taper. +// Arguments: +// poly = Array of points of a polygon path, to be extruded. +// h = height of the spiral to extrude along. +// r = Radius of the spiral to extrude along. Default: 50 +// turns = number of revolutions to spiral up along the height. +// --- +// d = Diameter of the spiral to extrude along. +// higbee = Length to taper thread ends over. +// higbee1 = Taper length at start +// higbee2 = Taper length at end +// internal = direction to taper the threads with higbee. If true threads taper outward; if false they taper inward. Default: false +// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` +// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` +// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` +// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`. +// Example: +// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]]; +// spiral_sweep(poly, h=200, r=50, turns=3, $fn=36); +function _taperfunc(x) = + let(higofs = pow(0.05,2)) // Smallest hig scale is the square root of this value + sqrt((1-higofs)*x+higofs); +function _ss_polygon_r(N,theta) = + let( alpha = 360/N ) + cos(alpha/2)/(cos(posmod(theta,alpha)-alpha/2)); +function spiral_sweep(poly, h, r, turns=1, higbee, center, r1, r2, d, d1, d2, higbee1, higbee2, internal=false, anchor=CENTER, spin=0, orient=UP) = + assert(is_num(turns) && turns != 0) + let( + twist = 360*turns, + higsample = 10, // Oversample factor for higbee tapering + bounds = pointlist_bounds(poly), + yctr = (bounds[0].y+bounds[1].y)/2, + xmin = bounds[0].x, + xmax = bounds[1].x, + poly = path3d(clockwise_polygon(poly)), + anchor = get_anchor(anchor,center,BOT,BOT), + r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=50), + r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=50), + sides = segs(max(r1,r2)), + dir = sign(twist), + ang_step = 360/sides*dir, + anglist = [for(ang = [0:ang_step:twist-EPSILON]) ang, + twist], + higbee1 = first_defined([higbee1, higbee, 0]), + higbee2 = first_defined([higbee2, higbee, 0]), + higang1 = 360 * higbee1 / (2 * r1 * PI), + higang2 = 360 * higbee2 / (2 * r2 * PI) + ) + assert(higbee1>=0 && higbee2>=0) + assert(higang1 < dir*twist/2,"Higbee1 is more than half the threads") + assert(higang2 < dir*twist/2,"Higbee2 is more than half the threads") + let( + interp_ang = [ + for(i=idx(anglist,e=-2)) + each lerpn(anglist[i],anglist[i+1], + (higang1>0 && higang1>dir*anglist[i+1] + || (higang2>0 && higang2>dir*(twist-anglist[i]))) ? ceil((anglist[i+1]-anglist[i])/ang_step*higsample) + : 1, + endpoint=false), + last(anglist) + ], + skewmat = affine3d_skew_xz(xa=atan2(r2-r1,h)), + points = [ + for (a = interp_ang) let ( + hsc = dir*a0?true:false, + style=higbee1>0 || higbee2>0 ? "quincunx" : "alt" + ) + ) + reorient(anchor,spin,orient, vnf=vnf, r1=r1, r2=r2, l=h, p=vnf); + + + +module spiral_sweep(poly, h, r, turns=1, higbee, center, r1, r2, d, d1, d2, higbee1, higbee2, internal=false, anchor=CENTER, spin=0, orient=UP) { + vnf = spiral_sweep(poly, h, r, turns, higbee, center, r1, r2, d, d1, d2, higbee1, higbee2, internal); + attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) { + vnf_polyhedron(vnf, convexity=ceil(abs(2*turns))); + children(); + } +} + + + // Function&Module: path_sweep() // Usage: As module // path_sweep(shape, path, [method], [normal=], [closed=], [twist=], [twist_by_length=], [symmetry=], [last_normal=], [tangent=], [relaxed=], [caps=], [style=], [convexity=], [anchor=], [cp=], [spin=], [orient=], [atype=]) {attachments}; diff --git a/threading.scad b/threading.scad index fd03d9f..e55d019 100644 --- a/threading.scad +++ b/threading.scad @@ -1154,7 +1154,7 @@ module generic_threaded_nut( // pitch = Distance between threads. Default: 2mm/thread // thread_depth = Depth of threads from top to bottom. // flank_angle = Angle of thread faces to plane perpendicular to screw. Default: 15 degrees. -// twist = Number of degrees to rotate thread around. Default: 720 degrees. +// turns = Number of revolutions to rotate thread around. Default: 2. // --- // profile = If an asymmetrical thread profile is needed, it can be specified here. // starts = The number of thread starts. Default: 1 @@ -1203,18 +1203,18 @@ module generic_threaded_nut( // right(14)back(14)text("angle",size=4,halign="center"); // } // Examples: -// thread_helix(d=10, pitch=2, thread_depth=0.75, flank_angle=15, twist=900, $fn=72); -// thread_helix(d=10, pitch=2, thread_depth=0.75, flank_angle=15, twist=900, higbee=1, $fn=72); -// thread_helix(d=10, pitch=2, thread_depth=0.75, flank_angle=15, twist=720, higbee=2, internal=true, $fn=72); -// thread_helix(d=10, pitch=2, thread_depth=0.75, flank_angle=15, twist=360, left_handed=true, higbee=1, $fn=36); +// thread_helix(d=10, pitch=2, thread_depth=0.75, flank_angle=15, turns=2.5, $fn=72); +// thread_helix(d=10, pitch=2, thread_depth=0.75, flank_angle=15, turns=2.5, higbee=1, $fn=72); +// thread_helix(d=10, pitch=2, thread_depth=0.75, flank_angle=15, turns=2, higbee=2, internal=true, $fn=72); +// thread_helix(d=10, pitch=2, thread_depth=0.75, flank_angle=15, turns=1, left_handed=true, higbee=1, $fn=36); module thread_helix( - d, pitch, thread_depth, flank_angle, twist=720, + d, pitch, thread_depth, flank_angle, turns=2, profile, starts=1, left_handed=false, internal=false, d1, d2, higbee, higbee1, higbee2, anchor, spin, orient ) { dummy1=assert(is_undef(profile) || !any_defined([thread_depth, flank_angle]),"Cannot give thread_depth or flank_angle with a profile"); - h = pitch*starts*twist/360; + h = pitch*starts*turns; r1 = get_radius(d1=d1, d=d, dflt=10); r2 = get_radius(d1=d2, d=d, dflt=10); profile = is_def(profile) ? profile : @@ -1241,7 +1241,7 @@ module thread_helix( dir = left_handed? -1 : 1; attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) { zrot_copies(n=starts) { - spiral_sweep(pline, h=h, r1=r1, r2=r2, twist=twist*dir, higbee=higbee, higbee1=higbee1, higbee2=higbee2, internal=internal, anchor=CENTER); + spiral_sweep(pline, h=h, r1=r1, r2=r2, turns=turns*dir, higbee=higbee, higbee1=higbee1, higbee2=higbee2, internal=internal, anchor=CENTER); } children(); }