Merge pull request #989 from adrianVmariano/master

misc fixes
This commit is contained in:
Revar Desmera 2022-11-10 16:58:07 -08:00 committed by GitHub
commit df00cba99b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 74 additions and 50 deletions

View file

@ -2469,7 +2469,7 @@ function _find_anchor(anchor, geom) =
bot = point3d(v_mul(r1,axy), -l/2), bot = point3d(v_mul(r1,axy), -l/2),
top = point3d(v_mul(r2,axy)+shift, l/2), top = point3d(v_mul(r2,axy)+shift, l/2),
pos = point3d(cp) + lerp(bot,top,u) + offset, pos = point3d(cp) + lerp(bot,top,u) + offset,
sidevec = rot(from=UP, to=top-bot, p=point3d(axy)), sidevec = rot(from=UP, to=top==bot?UP:top-bot, p=point3d(axy)),
vvec = anch==CENTER? UP : unit([0,0,anch.z],UP), vvec = anch==CENTER? UP : unit([0,0,anch.z],UP),
vec = anch==CENTER? CENTER : vec = anch==CENTER? CENTER :
approx(axy,[0,0])? unit(anch,UP) : approx(axy,[0,0])? unit(anch,UP) :

View file

@ -105,7 +105,7 @@ module cubetruss_segment(size, strut, bracing, anchor=CENTER, spin=0, orient=UP)
// Module: cubetruss_support() // Module: cubetruss_support()
// Usage: // Usage:
// cubetruss_support([size], [strut]); // cubetruss_support([size], [strut], [extents], [anchor], [spin], [orient]) [ATTACHMENTS];
// Description: // Description:
// Creates a single cubetruss support. // Creates a single cubetruss support.
// Arguments: // Arguments:
@ -166,7 +166,7 @@ module cubetruss_support(size, strut, extents=1, anchor=CENTER, spin=0, orient=U
// Module: cubetruss_clip() // Module: cubetruss_clip()
// Usage: // Usage:
// cubetruss_clip(extents, [size], [strut], [clipthick]); // cubetruss_clip(extents, [size], [strut], [clipthick], [$slop=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
// Description: // Description:
// Creates a pair of clips to add onto the end of a truss. // Creates a pair of clips to add onto the end of a truss.
// Arguments: // Arguments:
@ -175,6 +175,7 @@ module cubetruss_support(size, strut, extents=1, anchor=CENTER, spin=0, orient=U
// strut = The width of the struts on the cubetruss cubes. Default: `$cubetruss_strut_size` (usually 3) // strut = The width of the struts on the cubetruss cubes. Default: `$cubetruss_strut_size` (usually 3)
// clipthick = The thickness of the clip. Default: `$cubetruss_clip_thickness` (usually 1.6) // clipthick = The thickness of the clip. Default: `$cubetruss_clip_thickness` (usually 1.6)
// --- // ---
// $slop = allowance for printer overextrusion
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
@ -230,7 +231,7 @@ module cubetruss_clip(extents=1, size, strut, clipthick, anchor=CENTER, spin=0,
// Module: cubetruss_foot() // Module: cubetruss_foot()
// Usage: // Usage:
// cubetruss_foot(w, [size], [strut], [clipthick]); // cubetruss_foot(w, [size], [strut], [clipthick], [$slop=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
// Description: // Description:
// Creates a foot that can be clipped onto the bottom of a truss for support. // Creates a foot that can be clipped onto the bottom of a truss for support.
// Arguments: // Arguments:
@ -239,6 +240,7 @@ module cubetruss_clip(extents=1, size, strut, clipthick, anchor=CENTER, spin=0,
// strut = The width of the struts on the cubetruss cubes. Default: `$cubetruss_strut_size` (usually 3) // strut = The width of the struts on the cubetruss cubes. Default: `$cubetruss_strut_size` (usually 3)
// clipthick = The thickness of the clips. Default: `$cubetruss_clip_thickness` (usually 1.6) // clipthick = The thickness of the clips. Default: `$cubetruss_clip_thickness` (usually 1.6)
// --- // ---
// $slop = make fit looser to allow for printer overextrusion
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
@ -306,7 +308,7 @@ module cubetruss_foot(w=1, size, strut, clipthick, anchor=CENTER, spin=0, orient
// Module: cubetruss_joiner() // Module: cubetruss_joiner()
// Usage: // Usage:
// cubetruss_joiner([w], [vert], [size], [strut], [clipthick]); // cubetruss_joiner([w], [vert], [size], [strut], [clipthick], [$slop=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
// Description: // Description:
// Creates a part to join two cubetruss trusses end-to-end. // Creates a part to join two cubetruss trusses end-to-end.
// Arguments: // Arguments:
@ -316,6 +318,7 @@ module cubetruss_foot(w=1, size, strut, clipthick, anchor=CENTER, spin=0, orient
// strut = The width of the struts on the cubetruss cubes. Default: `$cubetruss_strut_size` (usually 3) // strut = The width of the struts on the cubetruss cubes. Default: `$cubetruss_strut_size` (usually 3)
// clipthick = The thickness of the clips. Default: `$cubetruss_clip_thickness` (usually 1.6) // clipthick = The thickness of the clips. Default: `$cubetruss_clip_thickness` (usually 1.6)
// --- // ---
// $slop = Make fit looser by this amount to allow for printer overextrusion
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
@ -373,7 +376,7 @@ module cubetruss_joiner(w=1, vert=true, size, strut, clipthick, anchor=CENTER, s
// Module: cubetruss_uclip() // Module: cubetruss_uclip()
// Usage: // Usage:
// cubetruss_uclip(dual, [size], [strut], [clipthick]); // cubetruss_uclip(dual, [size], [strut], [clipthick], [$slop=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
// Description: // Description:
// Creates a small clip that can snap around one or two adjacent struts. // Creates a small clip that can snap around one or two adjacent struts.
// Arguments: // Arguments:
@ -382,6 +385,7 @@ module cubetruss_joiner(w=1, vert=true, size, strut, clipthick, anchor=CENTER, s
// strut = The width of the struts on the cubetruss cubes. Default: `$cubetruss_strut_size` (usually 3) // strut = The width of the struts on the cubetruss cubes. Default: `$cubetruss_strut_size` (usually 3)
// clipthick = The thickness of the clips. Default: `$cubetruss_clip_thickness` (usually 1.6) // clipthick = The thickness of the clips. Default: `$cubetruss_clip_thickness` (usually 1.6)
// --- // ---
// $slop = Make fit looser by this amount
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`

View file

@ -25,7 +25,10 @@
// Draws a 2D or 3D path with a given line width. Joints and each endcap can be replaced with // Draws a 2D or 3D path with a given line width. Joints and each endcap can be replaced with
// various marker shapes, and can be assigned different colors. If passed a region instead of // various marker shapes, and can be assigned different colors. If passed a region instead of
// a path, draws each path in the region as a closed polygon by default. If `closed=false` is // a path, draws each path in the region as a closed polygon by default. If `closed=false` is
// given with a region, each subpath is drawn as an un-closed line path. // given with a region or list of paths, then each path is drawn without the closing line segment.
// To facilitate debugging, stroke() accepts "paths" that have a single point. These are drawn with
// the style of endcap1, but have their own scale parameter, `singleton_scale`, which defaults to 2
// so that singleton dots with endcap "round" are clearly visible.
// Figure(Med,NoAxes,2D,VPR=[0,0,0],VPD=250): Endcap Types // Figure(Med,NoAxes,2D,VPR=[0,0,0],VPD=250): Endcap Types
// cap_pairs = [ // cap_pairs = [
// ["butt", "chisel" ], // ["butt", "chisel" ],
@ -84,6 +87,7 @@
// endcap_color2 = If given, sets the color of the ending endcap. Overrides `color=`, `dots_color=`, and `endcap_color=`. // endcap_color2 = If given, sets the color of the ending endcap. Overrides `color=`, `dots_color=`, and `endcap_color=`.
// joint_color = If given, sets the color of the joints. Overrides `color=` and `dots_color=`. // joint_color = If given, sets the color of the joints. Overrides `color=` and `dots_color=`.
// dots_color = If given, sets the color of the endcaps and joints. Overrides `color=`. // dots_color = If given, sets the color of the endcaps and joints. Overrides `color=`.
// singleton_scale = Change the scale of the endcap shape drawn for singleton paths. Default: 2.
// convexity = Max number of times a line could intersect a wall of an endcap. // convexity = Max number of times a line could intersect a wall of an endcap.
// Example(2D): Drawing a Path // Example(2D): Drawing a Path
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]]; // path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
@ -100,7 +104,7 @@
// Example(2D): Mixed Endcaps // Example(2D): Mixed Endcaps
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]]; // path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=10, endcap1="tail2", endcap2="arrow2"); // stroke(path, width=10, endcap1="tail2", endcap2="arrow2");
// Example(2D): Plotting Points // Example(2D): Plotting Points. Setting endcap_angle to zero results in the weird arrow orientation.
// path = [for (a=[0:30:360]) [a-180, 60*sin(a)]]; // path = [for (a=[0:30:360]) [a-180, 60*sin(a)]];
// stroke(path, width=3, joints="diamond", endcaps="arrow2", endcap_angle=0, endcap_width=5, joint_angle=0, joint_width=5); // stroke(path, width=3, joints="diamond", endcaps="arrow2", endcap_angle=0, endcap_width=5, joint_angle=0, joint_width=5);
// Example(2D): Joints and Endcaps // Example(2D): Joints and Endcaps
@ -147,6 +151,12 @@
// ] // ]
// ]; // ];
// stroke(paths, closed=false, width=5); // stroke(paths, closed=false, width=5);
// Example(2D): Paths with a singleton. Note that the singleton is not a single point, but a list containing a single point.
// stroke([
// [[0,0],[1,1]],
// [[1.5,1.5]],
// [[2,2],[3,3]]
// ],width=0.2,closed=false,$fn=16);
function stroke( function stroke(
path, width=1, closed, path, width=1, closed,
endcaps, endcap1, endcap2, joints, dots, endcaps, endcap1, endcap2, joints, dots,
@ -155,7 +165,7 @@ function stroke(
endcap_extent, endcap_extent1, endcap_extent2, joint_extent, dots_extent, endcap_extent, endcap_extent1, endcap_extent2, joint_extent, dots_extent,
endcap_angle, endcap_angle1, endcap_angle2, joint_angle, dots_angle, endcap_angle, endcap_angle1, endcap_angle2, joint_angle, dots_angle,
endcap_color, endcap_color1, endcap_color2, joint_color, dots_color, color, endcap_color, endcap_color1, endcap_color2, joint_color, dots_color, color,
trim, trim1, trim2, trim, trim1, trim2, singleton_scale=2,
convexity=10 convexity=10
) = no_function("stroke"); ) = no_function("stroke");
@ -168,7 +178,7 @@ module stroke(
endcap_extent, endcap_extent1, endcap_extent2, joint_extent, dots_extent, endcap_extent, endcap_extent1, endcap_extent2, joint_extent, dots_extent,
endcap_angle, endcap_angle1, endcap_angle2, joint_angle, dots_angle, endcap_angle, endcap_angle1, endcap_angle2, joint_angle, dots_angle,
endcap_color, endcap_color1, endcap_color2, joint_color, dots_color, color, endcap_color, endcap_color1, endcap_color2, joint_color, dots_color, color,
trim, trim1, trim2, trim, trim1, trim2, singleton_scale=2,
convexity=10 convexity=10
) { ) {
no_children($children); no_children($children);
@ -201,8 +211,8 @@ module stroke(
assert(false, str("Invalid cap or joint: ",cap)); assert(false, str("Invalid cap or joint: ",cap));
function _shape_path(cap,linewidth,w,l,l2) = ( function _shape_path(cap,linewidth,w,l,l2) = (
(cap=="butt" || cap==false || cap==undef)? [] : cap=="butt" || cap==false || cap==undef ? [] :
(cap=="round" || cap==true)? scale([w,l], p=circle(d=1, $fn=max(8, segs(w/2)))) : cap=="round" || cap==true ? scale([w,l], p=circle(d=1, $fn=max(8, segs(w/2)))) :
cap=="chisel"? scale([w,l], p=circle(d=1,$fn=4)) : cap=="chisel"? scale([w,l], p=circle(d=1,$fn=4)) :
cap=="diamond"? circle(d=w,$fn=4) : cap=="diamond"? circle(d=w,$fn=4) :
cap=="square"? scale([w,l], p=square(1,center=true)) : cap=="square"? scale([w,l], p=square(1,center=true)) :
@ -239,47 +249,47 @@ module stroke(
endcap_width1 = first_defined([endcap_width1, endcap_width, dots_width, endcap1_dflts[0]]); endcap_width1 = first_defined([endcap_width1, endcap_width, dots_width, endcap1_dflts[0]]);
endcap_width2 = first_defined([endcap_width2, endcap_width, dots_width, endcap2_dflts[0]]); endcap_width2 = first_defined([endcap_width2, endcap_width, dots_width, endcap2_dflts[0]]);
joint_width = first_defined([joint_width, dots_width, joint_dflts[0]]); joint_width = first_defined([joint_width, dots_width, joint_dflts[0]]);
check3 =
assert(is_num(endcap_width1))
assert(is_num(endcap_width2))
assert(is_num(joint_width));
endcap_length1 = first_defined([endcap_length1, endcap_length, dots_length, endcap1_dflts[1]*endcap_width1]); endcap_length1 = first_defined([endcap_length1, endcap_length, dots_length, endcap1_dflts[1]*endcap_width1]);
endcap_length2 = first_defined([endcap_length2, endcap_length, dots_length, endcap2_dflts[1]*endcap_width2]); endcap_length2 = first_defined([endcap_length2, endcap_length, dots_length, endcap2_dflts[1]*endcap_width2]);
joint_length = first_defined([joint_length, dots_length, joint_dflts[1]*joint_width]); joint_length = first_defined([joint_length, dots_length, joint_dflts[1]*joint_width]);
check4 =
assert(is_num(endcap_length1))
assert(is_num(endcap_length2))
assert(is_num(joint_length));
endcap_extent1 = first_defined([endcap_extent1, endcap_extent, dots_extent, endcap1_dflts[2]*endcap_width1]); endcap_extent1 = first_defined([endcap_extent1, endcap_extent, dots_extent, endcap1_dflts[2]*endcap_width1]);
endcap_extent2 = first_defined([endcap_extent2, endcap_extent, dots_extent, endcap2_dflts[2]*endcap_width2]); endcap_extent2 = first_defined([endcap_extent2, endcap_extent, dots_extent, endcap2_dflts[2]*endcap_width2]);
joint_extent = first_defined([joint_extent, dots_extent, joint_dflts[2]*joint_width]); joint_extent = first_defined([joint_extent, dots_extent, joint_dflts[2]*joint_width]);
check5 =
assert(is_num(endcap_extent1))
assert(is_num(endcap_extent2))
assert(is_num(joint_extent));
endcap_angle1 = first_defined([endcap_angle1, endcap_angle, dots_angle]); endcap_angle1 = first_defined([endcap_angle1, endcap_angle, dots_angle]);
endcap_angle2 = first_defined([endcap_angle2, endcap_angle, dots_angle]); endcap_angle2 = first_defined([endcap_angle2, endcap_angle, dots_angle]);
joint_angle = first_defined([joint_angle, dots_angle]); joint_angle = first_defined([joint_angle, dots_angle]);
check6 =
assert(is_undef(endcap_angle1)||is_num(endcap_angle1)) check3 =
assert(is_undef(endcap_angle2)||is_num(endcap_angle2)) assert(all_nonnegative([endcap_length1]))
assert(is_undef(joint_angle)||is_num(joint_angle)); assert(all_nonnegative([endcap_length2]))
assert(all_nonnegative([joint_length]));
assert(all_nonnegative([endcap_extent1]))
assert(all_nonnegative([endcap_extent2]))
assert(all_nonnegative([joint_extent]));
assert(is_undef(endcap_angle1)||is_finite(endcap_angle1))
assert(is_undef(endcap_angle2)||is_finite(endcap_angle2))
assert(is_undef(joint_angle)||is_finite(joint_angle))
assert(all_positive([singleton_scale]))
assert(all_positive(width));
endcap_color1 = first_defined([endcap_color1, endcap_color, dots_color, color]); endcap_color1 = first_defined([endcap_color1, endcap_color, dots_color, color]);
endcap_color2 = first_defined([endcap_color2, endcap_color, dots_color, color]); endcap_color2 = first_defined([endcap_color2, endcap_color, dots_color, color]);
joint_color = first_defined([joint_color, dots_color, color]); joint_color = first_defined([joint_color, dots_color, color]);
paths = force_region(path);
check7 = assert(is_region(paths),"The path argument must be a list of 2D or 3D points, or a region."); // We want to allow "paths" with length 1, so we can't use the normal path/region checks
paths = is_matrix(path) ? [path] : path;
assert(is_list(paths),"The path argument must be a list of 2D or 3D points, or a region.");
for (path = paths) { for (path = paths) {
assert(len(path)==1 || is_path(path,[2,3]), "The path argument must be a list of 2D or 3D points, or a region."); pathvalid = is_path(path,[2,3]) || same_shape(path,[[0,0]]) || same_shape(path,[[0,0,0]]);
assert(pathvalid,"The path argument must be a list of 2D or 3D points, or a region.");
path = deduplicate( closed? close_path(path) : path ); path = deduplicate( closed? close_path(path) : path );
check8 = assert(is_num(width) || (is_vector(width) && len(width)==len(path))); check4 = assert(is_num(width) || len(width)==len(path),
"width must be a number or a vector the same length as the path (or all components of a region)");
width = is_num(width)? [for (x=path) width] : width; width = is_num(width)? [for (x=path) width] : width;
check9 = assert(all([for (w=width) w>0]));
endcap_shape1 = _shape_path(endcap1, width[0], endcap_width1, endcap_length1, endcap_extent1); endcap_shape1 = _shape_path(endcap1, width[0], endcap_width1, endcap_length1, endcap_extent1);
endcap_shape2 = _shape_path(endcap2, last(width), endcap_width2, endcap_length2, endcap_extent2); endcap_shape2 = _shape_path(endcap2, last(width), endcap_width2, endcap_length2, endcap_extent2);
@ -290,7 +300,6 @@ module stroke(
(endcap1=="arrow2")? endcap_length1*3/4 : (endcap1=="arrow2")? endcap_length1*3/4 :
0 0
]); ]);
check10 = assert(is_num(trim1));
trim2 = last(width) * first_defined([ trim2 = last(width) * first_defined([
trim2, trim, trim2, trim,
@ -298,8 +307,8 @@ module stroke(
(endcap2=="arrow2")? endcap_length2*3/4 : (endcap2=="arrow2")? endcap_length2*3/4 :
0 0
]); ]);
check11 = assert(is_num(trim2)); check10 = assert(is_finite(trim1))
assert(is_finite(trim2));
if (len(path) == 1) { if (len(path) == 1) {
if (len(path[0]) == 2) { if (len(path[0]) == 2) {
@ -307,7 +316,7 @@ module stroke(
setcolor(endcap_color1) { setcolor(endcap_color1) {
translate(path[0]) { translate(path[0]) {
mat = is_undef(endcap_angle1)? ident(3) : zrot(endcap_angle1); mat = is_undef(endcap_angle1)? ident(3) : zrot(endcap_angle1);
multmatrix(mat) polygon(endcap_shape1); multmatrix(mat) polygon(scale(singleton_scale,endcap_shape1));
} }
} }
} else { } else {
@ -685,7 +694,7 @@ function arc(n, r, angle, d, cp, points, corner, width, thickness, start, wedge=
is_def(angle)? ( is_def(angle)? (
let( let(
parmok = !any_defined([points,width,thickness]) && parmok = !any_defined([points,width,thickness]) &&
((is_vector(angle,2) && is_undef(start)) || is_num(angle)) ((is_vector(angle,2) && is_undef(start)) || is_finite(angle))
) )
assert(parmok,"Invalid parameters in arc") assert(parmok,"Invalid parameters in arc")
let( let(

View file

@ -13,7 +13,7 @@
// Module: apply_folding_hinges_and_snaps() // Module: apply_folding_hinges_and_snaps()
// Usage: // Usage:
// apply_folding_hinges_and_snaps(thick, [foldangle=], [hinges=], [snaps=], [sockets=], [snaplen=], [snapdiam=], [hingegap=], [layerheight=]) CHILDREN; // apply_folding_hinges_and_snaps(thick, [foldangle=], [hinges=], [snaps=], [sockets=], [snaplen=], [snapdiam=], [hingegap=], [layerheight=], [$slop=]) CHILDREN;
// Description: // Description:
// Adds snaplocks and create hinges in children at the given positions. // Adds snaplocks and create hinges in children at the given positions.
// Arguments: // Arguments:
@ -26,6 +26,8 @@
// snapdiam = Diameter/width of locking snaps. // snapdiam = Diameter/width of locking snaps.
// hingegap = Size in mm of the gap at the bottom of the hinge, to make room for folding. // hingegap = Size in mm of the gap at the bottom of the hinge, to make room for folding.
// layerheight = The expected printing layer height in mm. // layerheight = The expected printing layer height in mm.
// ---
// $slop = increase hinge gap by twice this amount
// Example(Med): // Example(Med):
// size=100; // size=100;
// apply_folding_hinges_and_snaps( // apply_folding_hinges_and_snaps(
@ -93,7 +95,7 @@ module apply_folding_hinges_and_snaps(thick, foldangle=90, hinges=[], snaps=[],
// Module: folding_hinge_mask() // Module: folding_hinge_mask()
// Usage: // Usage:
// folding_hinge_mask(l, thick, [layerheight=], [foldangle=], [hingegap=], [anchor=], [spin=], [orient=]) [ATTACHMENTS]; // folding_hinge_mask(l, thick, [layerheight=], [foldangle=], [hingegap=], [$slop=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
// Description: // Description:
// Creates a mask to be differenced away from a plate to create a foldable hinge. // Creates a mask to be differenced away from a plate to create a foldable hinge.
// Center the mask at the bottom of the plate you want to make a hinge in. // Center the mask at the bottom of the plate you want to make a hinge in.
@ -105,6 +107,7 @@ module apply_folding_hinges_and_snaps(thick, foldangle=90, hinges=[], snaps=[],
// layerheight = The expected printing layer height in mm. // layerheight = The expected printing layer height in mm.
// foldangle = The interior angle in degrees of the joint to be created with the hinge. Default: 90 // foldangle = The interior angle in degrees of the joint to be created with the hinge. Default: 90
// hingegap = Size in mm of the gap at the bottom of the hinge, to make room for folding. // hingegap = Size in mm of the gap at the bottom of the hinge, to make room for folding.
// $slop = Increase size of hinge gap by double this amount
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
@ -124,7 +127,7 @@ module folding_hinge_mask(l, thick, layerheight=0.2, foldangle=90, hingegap=unde
// Module: snap_lock() // Module: snap_lock()
// Usage: // Usage:
// snap_lock(thick, [snaplen=], [snapdiam=], [layerheight=], [foldangle=], [hingegap=], [anchor=], [spin=], [orient=]) [ATTACHMENTS]; // snap_lock(thick, [snaplen=], [snapdiam=], [layerheight=], [foldangle=], [hingegap=], [$slop=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
// Description: // Description:
// Creates the central snaplock part. // Creates the central snaplock part.
// Arguments: // Arguments:
@ -135,6 +138,7 @@ module folding_hinge_mask(l, thick, layerheight=0.2, foldangle=90, hingegap=unde
// layerheight = The expected printing layer height in mm. // layerheight = The expected printing layer height in mm.
// foldangle = The interior angle in degrees of the joint to be created with the hinge. Default: 90 // foldangle = The interior angle in degrees of the joint to be created with the hinge. Default: 90
// hingegap = Size in mm of the gap at the bottom of the hinge, to make room for folding. // hingegap = Size in mm of the gap at the bottom of the hinge, to make room for folding.
// $slop = increase size of hinge gap by double this amount
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
@ -159,7 +163,7 @@ module snap_lock(thick, snaplen=5, snapdiam=5, layerheight=0.2, foldangle=90, hi
// Module: snap_socket() // Module: snap_socket()
// Usage: // Usage:
// snap_socket(thick, [snaplen=], [snapdiam=], [layerheight=], [foldangle=], [hingegap=], [anchor=], [spin=], [orient=]) [ATTACHMENTS]; // snap_socket(thick, [snaplen=], [snapdiam=], [layerheight=], [foldangle=], [hingegap=], [$slop=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
// Description: // Description:
// Creates the outside snaplock socketed part. // Creates the outside snaplock socketed part.
// Arguments: // Arguments:
@ -170,6 +174,7 @@ module snap_lock(thick, snaplen=5, snapdiam=5, layerheight=0.2, foldangle=90, hi
// layerheight = The expected printing layer height in mm. // layerheight = The expected printing layer height in mm.
// foldangle = The interior angle in degrees of the joint to be created with the hinge. Default: 90 // foldangle = The interior angle in degrees of the joint to be created with the hinge. Default: 90
// hingegap = Size in mm of the gap at the bottom of the hinge, to make room for folding. // hingegap = Size in mm of the gap at the bottom of the hinge, to make room for folding.
// $slop = Increase size of hinge gap by double this amount
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`

View file

@ -14,7 +14,7 @@
// Module: nema_stepper_motor() // Module: nema_stepper_motor()
// Usage: // Usage:
// nema_stepper_motor(size, h, shaft_len, ...) [attachments]; // nema_stepper_motor(size, h, shaft_len, [$slop=], ...) [ATTACHMENTS];
// Topics: Parts, Motors // Topics: Parts, Motors
// Description: // Description:
// Creates a model of a NEMA standard stepper motor. // Creates a model of a NEMA standard stepper motor.
@ -25,6 +25,7 @@
// --- // ---
// details = If false, creates a very rough motor shape, suitable for using as a mask. Default: true // details = If false, creates a very rough motor shape, suitable for using as a mask. Default: true
// atype = The attachment set type to use when anchoring. Default: `"body"` // atype = The attachment set type to use when anchoring. Default: `"body"`
// $slop = If details is false then increase size of the model by double this amount (for use as a mask)
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `TOP` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `TOP`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
@ -117,7 +118,7 @@ module nema_stepper_motor(size=17, h=24, shaft_len=20, details=true, atype="body
// Module: nema_mount_mask() // Module: nema_mount_mask()
// Usage: // Usage:
// nema_mount_mask(size, depth, l, ...); // nema_mount_mask(size, depth, l, [$slop], ...);
// Topics: Parts, Motors // Topics: Parts, Motors
// Description: Creates a mask to use when making standard NEMA stepper motor mounts. // Description: Creates a mask to use when making standard NEMA stepper motor mounts.
// Arguments: // Arguments:

View file

@ -399,7 +399,7 @@ function _partition_cutpath(l, h, cutsize, cutpath, gap) =
// Module: partition_mask() // Module: partition_mask()
// Usage: // Usage:
// partition_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [spin], [orient]) [ATTACHMENTS]; // partition_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [$slop=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
// Description: // Description:
// Creates a mask that you can use to difference or intersect with an object to remove half of it, leaving behind a side designed to allow assembly of the sub-parts. // Creates a mask that you can use to difference or intersect with an object to remove half of it, leaving behind a side designed to allow assembly of the sub-parts.
// Arguments: // Arguments:
@ -449,7 +449,7 @@ module partition_mask(l=100, w=100, h=100, cutsize=10, cutpath="jigsaw", gap=0,
// Module: partition_cut_mask() // Module: partition_cut_mask()
// Usage: // Usage:
// partition_cut_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [spin], [orient]) [ATTACHMENTS]; // partition_cut_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [$slop=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
// Description: // Description:
// Creates a mask that you can use to difference with an object to cut it into two sub-parts that can be assembled. // Creates a mask that you can use to difference with an object to cut it into two sub-parts that can be assembled.
// The `$slop` value is important to get the proper fit and should probably be smaller than 0.2. The examples below // The `$slop` value is important to get the proper fit and should probably be smaller than 0.2. The examples below
@ -463,7 +463,7 @@ module partition_mask(l=100, w=100, h=100, cutsize=10, cutpath="jigsaw", gap=0,
// gap = Empty gaps between cutpath iterations. Default: 0 // gap = Empty gaps between cutpath iterations. Default: 0
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// $slop = The width of the cut mask, to correct for printer-specific fitting. Min: 0.05. // $slop = The width of the cut mask, to correct for printer-specific fitting.
// Examples: // Examples:
// partition_cut_mask(gap=0, cutpath="dovetail"); // partition_cut_mask(gap=0, cutpath="dovetail");
// partition_cut_mask(gap=30, cutpath="dovetail"); // partition_cut_mask(gap=30, cutpath="dovetail");
@ -492,7 +492,7 @@ module partition_cut_mask(l=100, h=100, cutsize=10, cutpath="jigsaw", gap=0, anc
// Module: partition() // Module: partition()
// Usage: // Usage:
// partition(size, [spread], [cutsize], [cutpath], [gap], [spin]) CHILDREN; // partition(size, [spread], [cutsize], [cutpath], [gap], [spin], [$slop=]) CHILDREN;
// Description: // Description:
// Partitions an object into two parts, spread apart a small distance, with matched joining edges. // Partitions an object into two parts, spread apart a small distance, with matched joining edges.
// Arguments: // Arguments:
@ -502,6 +502,8 @@ module partition_cut_mask(l=100, h=100, cutsize=10, cutpath="jigsaw", gap=0, anc
// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5. // cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5.
// gap = Empty gaps between cutpath iterations. Default: 0 // gap = Empty gaps between cutpath iterations. Default: 0
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// ---
// $slop = Extra gap to leave to correct for printer-specific fitting.
// Examples(Med): // Examples(Med):
// partition(spread=12, cutpath="dovetail") cylinder(h=50, d=80, center=false); // partition(spread=12, cutpath="dovetail") cylinder(h=50, d=80, center=false);
// partition(spread=12, gap=30, cutpath="dovetail") cylinder(h=50, d=80, center=false); // partition(spread=12, gap=30, cutpath="dovetail") cylinder(h=50, d=80, center=false);

View file

@ -285,7 +285,7 @@ function torx_depth(size) = torx_info(size)[2];
// Module: robertson_mask() // Module: robertson_mask()
// Usage: // Usage:
// robertson_mask(size, [extra]); // robertson_mask(size, [extra], [ang], [$slop=]);
// Description: // Description:
// Creates a mask for creating a Robertson/Square drive recess given the drive size as an integer. // Creates a mask for creating a Robertson/Square drive recess given the drive size as an integer.
// The width of the recess will be oversized by `2 * $slop`. Note that this model is based // The width of the recess will be oversized by `2 * $slop`. Note that this model is based
@ -295,6 +295,7 @@ function torx_depth(size) = torx_info(size)[2];
// size = The size of the square drive, as an integer from 0 to 4. // size = The size of the square drive, as an integer from 0 to 4.
// extra = Extra length of drive mask to create. // extra = Extra length of drive mask to create.
// ang = taper angle of each face. Default: 2.5 // ang = taper angle of each face. Default: 2.5
// ---
// $slop = enlarge recess by this twice amount. Default: 0 // $slop = enlarge recess by this twice amount. Default: 0
// Example: // Example:
// robertson_mask(size=2); // robertson_mask(size=2);

View file

@ -2547,6 +2547,7 @@ module teardrop(h, r, ang=45, cap_h, r1, r2, d, d1, d2, cap_h1, cap_h2, l, lengt
chamfer, chamfer1, chamfer2,anchor=CENTER, spin=0, orient=UP) chamfer, chamfer1, chamfer2,anchor=CENTER, spin=0, orient=UP)
{ {
length = one_defined([l, h, length, height],"l,h,length,height"); length = one_defined([l, h, length, height],"l,h,length,height");
dummy=assert(is_finite(length) && length>0, "length must be positive");
r1 = get_radius(r=r, r1=r1, d=d, d1=d1); r1 = get_radius(r=r, r1=r1, d=d, d1=d1);
r2 = get_radius(r=r, r1=r2, d=d, d1=d2); r2 = get_radius(r=r, r1=r2, d=d, d1=d2);
tip_y1 = r1/cos(90-ang); tip_y1 = r1/cos(90-ang);
@ -2574,6 +2575,7 @@ function teardrop(h, r, ang=45, cap_h, r1, r2, d, d1, d2, cap_h1, cap_h2, chamf
r1 = get_radius(r=r, r1=r1, d=d, d1=d1, dflt=1), r1 = get_radius(r=r, r1=r1, d=d, d1=d1, dflt=1),
r2 = get_radius(r=r, r1=r2, d=d, d1=d2, dflt=1), r2 = get_radius(r=r, r1=r2, d=d, d1=d2, dflt=1),
length = one_defined([l, h, length, height],"l,h,length,height"), length = one_defined([l, h, length, height],"l,h,length,height"),
dummy0=assert(is_finite(length) && length>0, "length must be positive"),
cap_h1 = first_defined([cap_h1, cap_h]), cap_h1 = first_defined([cap_h1, cap_h]),
cap_h2 = first_defined([cap_h2, cap_h]), cap_h2 = first_defined([cap_h2, cap_h]),
chamfer1 = first_defined([chamfer1,chamfer,0]), chamfer1 = first_defined([chamfer1,chamfer,0]),