Merge pull request #135 from adrianVmariano/master

Added support for rounding factor k to path_to_bezier and smooth_path.
This commit is contained in:
Revar Desmera 2020-03-07 16:31:34 -08:00 committed by GitHub
commit df3bb503b4
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 104 additions and 18 deletions

View file

@ -327,26 +327,40 @@ function bezier_polyline(bezier, splinesteps=16, N=3) = let(
);
// Function: path_to_bezier()
// Usage:
// path_to_bezier(path,[tangent],[closed]);
// path_to_bezier(path,[tangent],[k],[closed]);
// Description:
// Given an input path and optional path of tangent vectors, computes a cubic (degree 3) bezier path that passes
// through every point on the input path and matches the tangent vectors. If you do not supply
// the tangent it will be computed using path_tangents. If the path is closed specify this
// by setting closed=true.
// by setting closed=true. If you specify the curvature parameter k it scales the tangent vectors,
// which will increase or decrease the curvature of the interpolated bezier. Negative values of k create loops at the corners,
// so they are not allowed. Sufficiently large k values will also produce loops.
// Arguments:
// path = path of points to define the bezier
// tangents = optional list of tangent vectors at every point
// k = curvature parameter, a scalar or vector to adjust curvature at each point
// closed = set to true for a closed path. Default: false
function path_to_bezier(path, tangents, closed=false) =
function path_to_bezier(path, tangents, k, closed=false) =
assert(is_path(path,dim=undef),"Input path is not a valid path")
assert(is_undef(tangents) || is_path(tangents,dim=len(path[0])),"Tangents must be a path of the same dimension as the input path")
assert(is_undef(tangents) || len(path)==len(tangents), "Input tangents must be the same length as the input path")
let(
k = is_undef(k) ? repeat(1, len(path)) :
is_list(k) ? k : repeat(k, len(path)),
k_bad = [for(entry=k) if (entry<0) entry]
)
assert(len(k)==len(path), "Curvature parameter k must have the same length as the path")
assert(k_bad==[], "Curvature parameter k must be a nonnegative number or list of nonnegative numbers")
let(
tangents = is_def(tangents)? tangents : deriv(path, closed=closed),
lastpt = len(path) - (closed?0:1)
)
[for(i=[0:lastpt-1]) each [path[i], path[i]+tangents[i]/3, select(path,i+1)-select(tangents,i+1)/3],
[for(i=[0:lastpt-1]) each [path[i],
path[i]+k[i]*tangents[i]/3,
select(path,i+1)-select(k,i+1)*select(tangents,i+1)/3],
select(path,lastpt)];

View file

@ -548,7 +548,7 @@ function triangle_area(a,b,c) =
// plane3pt(p1, p2, p3);
// Description:
// Generates the cartesian equation of a plane from three non-collinear points on the plane.
// Returns [A,B,C,D] where Ax+By+Cz=D is the equation of a plane.
// Returns [A,B,C,D] where Ax + By + Cz = D is the equation of a plane.
// Arguments:
// p1 = The first point on the plane.
// p2 = The second point on the plane.
@ -583,6 +583,46 @@ function plane3pt_indexed(points, i1, i2, i3) =
) plane3pt(p1,p2,p3);
// Function: plane_intersection()
// Usage:
// plane_intersection(plane1, plane2, [plane3])
// Description:
// Compute the point which is the intersection of the three planes, or the line intersection of two planes.
// If you give three planes the intersection is returned as a point. If you give two planes the intersection
// is returned as a list of two points on the line of intersection. If any of the input planes are parallel
// then returns undef.
function plane_intersection(plane1,plane2,plane3) =
is_def(plane3) ?
let (
matrix = [for(p=[plane1,plane2,plane3]) select(p,0,2)],
rhs = [for(p=[plane1,plane2,plane3]) p[3]]
)
linear_solve(matrix,rhs)
:
let(
normal = cross(plane_normal(plane1), plane_normal(plane2))
)
approx(normal,0) ? undef :
let(
matrix = [for(p=[plane1,plane2]) select(p,0,2)],
rhs = [for(p=[plane1,plane2]) p[3]],
point = linear_solve(matrix,rhs),
dd=echo(point=point, normal=normal)
)
[point, point+normal];
// Function: plane_from_normal()
// Usage:
// plane_from_normal(normal, pt)
// Description:
// Returns a plane defined by a normal vector and a point.
// Example:
// plane_from_normal([0,0,1], [2,2,2]); // Returns the xy plane passing through the point (2,2,2)
function plane_from_normal(normal, pt) =
concat(normal, [normal*pt]);
// Function: plane_from_pointslist()
// Usage:
// plane_from_pointslist(points);

View file

@ -538,6 +538,8 @@ function mean(v) = sum(v)/len(v);
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
// If A is rank deficient or singular then linear_solve returns `undef`.
function linear_solve(A,b) =
assert(is_matrix(A))
assert(is_vector(b))
let(
dim = array_dim(A),
m=dim[0], n=dim[1]
@ -569,6 +571,7 @@ function submatrix(M,ind1,ind2) = [for(i=ind1) [for(j=ind2) M[i][j] ] ];
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R]. This factorization can be
// used to solve linear systems of equations.
function qr_factor(A) =
assert(is_matrix(A))
let(
dim = array_dim(A),
m = dim[0],
@ -673,6 +676,19 @@ function determinant(M) =
);
// Function: is_matrix()
// Usage:
// is_matrix(A,[m],[n])
// Description:
// Returns true if A is a numeric matrix of height m and width n. If m or n
// are omitted or set to undef then true is returned for any positive dimension.
function is_matrix(A,m,n) =
is_list(A) && len(A)>0 &&
(is_undef(m) || len(A)==m) &&
is_vector(A[0]) &&
(is_undef(n) || len(A[0])==n) &&
is_consistent(A);
// Section: Comparisons and Logic

View file

@ -9,10 +9,10 @@
// ```
//////////////////////////////////////////////////////////////////////
include <BOSL2/beziers.scad>
include <BOSL2/strings.scad>
include <BOSL2/structs.scad>
include <BOSL2/skin.scad>
include <beziers.scad>
include <strings.scad>
include <structs.scad>
include <skin.scad>
// CommonCode:
@ -409,16 +409,23 @@ function _rounding_offsets(edgespec,z_dir=1) =
// Function: smooth_path()
// Usage:
// smooth_path(path, [tangents], [splinesteps], [closed]
// smooth_path(path, [tangents], [k], [splinesteps], [closed]
// Description:
// Smooths the input path using a cubic spline. Every segment of the path will be replaced by a cubic curve
// with `splinesteps` points. The cubic interpolation will pass through every input point on the path
// and will match the tangents at every point. If you do not specify tangents they will be computed using
// deriv(). Note that the magnitude of the tangents affects the result. See also path_to_bezier().
// deriv(). See also path_to_bezier().
//
// Note that the magnitude of the tangents affects the result. If you increase it you will get a blunter
// corner with a larger radius of curvature. Decreasing it will produce a sharp corner. You can specify
// the curvature factor `k` to adjust the curvature. It can be a scalar or a vector the same length as
// the path and is used to scale the tangent vectors. Negative values of k create loops at the corners,
// so they are not allowed. Sufficiently large k values will also produce loops.
// Arguments:
// path = path to smooth
// tangents = tangent vectors of the path
// splinesteps = number of points to insert between the path points. Default: 10
// k = curvature parameter, a scalar or vector to adjust curvature at each point
// closed = set to true for a closed path. Default: false
// Example(2D): Original path in green, smoothed path in yellow:
// color("green")stroke(square(4), width=0.1);
@ -428,21 +435,30 @@ function _rounding_offsets(edgespec,z_dir=1) =
// Example(2D): A more interesting shape:
// path = [[0,0], [4,0], [7,14], [-3,12]];
// polygon(smooth_path(path,closed=true));
// Example(2D): Scaling the tangent data can decrease or increase the amount of smoothing:
// shape = square(4);
// polygon(smooth_path(shape, tangents=0.5*deriv(shape, closed=true),closed=true));
// Example(2D): Scaling the tangent data using the curvature parameter k can decrease or increase the amount of smoothing. Note this is the same
// as just multiplying the deriv(square(4)) by k.
// polygon(smooth_path(square(4), k=0.5,closed=true));
// Example(2D): Or you can specify your own tangent values to alter the shape of the curve
// polygon(smooth_path(square(4),tangents=1.25*[[-2,-1], [-2,1], [1,2], [2,-1]],closed=true));
// Example(FlatSpin): Works on 3d paths as well
// path = [[0,0,0],[3,3,2],[6,0,1],[9,9,0]];
// trace_polyline(smooth_path(path),size=.3);
function smooth_path(path, tangents, splinesteps=10, closed=false) =
let(
bez = path_to_bezier(path, tangents=tangents, closed=closed)
// Example(2D): The curve passes through all the points, but features some unexpected wiggles. These occur because the curvature is too low to change fast enough.
// path = [[0,0], [0,3], [.5,2.8], [1,2.2], [1,0]];
// polygon(smooth_path(path));
// color("red") place_copies(path)circle(r=.1,$fn=16);
// Example(2D): Using the k parameter is one way to fix this problem. By allowing sharper curvature (k<1) at the two points next to the problematic point we can achieve a smoother result. The other fix is to move your points.
// path = [[0,0], [0,3], [.5,2.8], [1,2.2], [1,0]];
// polygon(smooth_path(path,k=[1,.5,1,.5,1]));
// color("red") place_copies(path)circle(r=.1,$fn=16);
function smooth_path(path, tangents, k, splinesteps=10, closed=false) =
let (
bez = path_to_bezier(path, tangents, k=k, closed=closed)
)
bezier_polyline(bez,splinesteps=splinesteps);
// Module: offset_sweep()
//
// Description:

View file

@ -9,7 +9,7 @@
//////////////////////////////////////////////////////////////////////
include <BOSL2/beziers.scad>
include <beziers.scad>
// Section: Functions