diff --git a/shapes2d.scad b/shapes2d.scad index e77d314..aa70a09 100644 --- a/shapes2d.scad +++ b/shapes2d.scad @@ -84,8 +84,8 @@ module square(size=1, center, anchor, spin) { // When called as a function, returns a 2D path/list of points for a square/rectangle of the given size. // Arguments: // size = The size of the rectangle to create. If given as a scalar, both X and Y will be the same size. -// rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) -// chamfer = The chamfer size for the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer) +// rounding = The rounding radius for the corners. If negative, produces external roundover spikes on the X axis. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) +// chamfer = The chamfer size for the corners. If negative, produces external chamfer spikes on the X axis. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer) // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example(2D): @@ -98,6 +98,10 @@ module square(size=1, center, anchor, spin) { // rect([40,30], chamfer=5); // Example(2D): Rounded Rect // rect([40,30], rounding=5); +// Example(2D): Negative-Chamferred Rect +// rect([40,30], chamfer=-5); +// Example(2D): Negative-Rounded Rect +// rect([40,30], rounding=-5); // Example(2D): Mixed Chamferring and Rounding // rect([40,30],rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1); // Example(2D): Called as Function @@ -145,7 +149,8 @@ function rect(size=1, rounding=0, chamfer=0, anchor=CENTER, spin=0) = rounding = is_list(rounding)? rounding : [for (i=[0:3]) rounding], quadorder = [3,2,1,0], quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]], - insets = [for (i=[0:3]) chamfer[i]>0? chamfer[i] : rounding[i]>0? rounding[i] : 0], + eps = 1e-9, + insets = [for (i=[0:3]) abs(chamfer[i])>=eps? chamfer[i] : abs(rounding[i])>=eps? rounding[i] : 0], insets_x = max(insets[0]+insets[1],insets[2]+insets[3]), insets_y = max(insets[0]+insets[3],insets[1]+insets[2]) ) @@ -156,16 +161,20 @@ function rect(size=1, rounding=0, chamfer=0, anchor=CENTER, spin=0) = for(i = [0:3]) let( quad = quadorder[i], - inset = insets[quad], - cverts = quant(segs(inset),4)/4, - cp = v_mul(size/2-[inset,inset], quadpos[quad]), + qinset = insets[quad], + qpos = quadpos[quad], + qchamf = chamfer[quad], + qround = rounding[quad], + cverts = quant(segs(abs(qinset)),4)/4, step = 90/cverts, - angs = - chamfer[quad] > 0? [0,-90]-90*[i,i] : - rounding[quad] > 0? [for (j=[0:1:cverts]) 360-j*step-i*90] : - [0] + cp = v_mul(size/2-[qinset,abs(qinset)], qpos), + qpts = abs(qchamf) >= eps? [[0,abs(qinset)], [qinset,0]] : + abs(qround) >= eps? [for (j=[0:1:cverts]) let(a=90-j*step) v_mul(polar_to_xy(abs(qinset),a),[sign(qinset),1])] : + [[0,0]], + qfpts = [for (p=qpts) v_mul(p,qpos)], + qrpts = qpos.x*qpos.y < 0? reverse(qfpts) : qfpts ) - each [for (a = angs) cp + inset*[cos(a),sin(a)]] + each move(cp, p=qrpts) ] ) complex? reorient(anchor,spin, two_d=true, path=path, p=path) : @@ -785,6 +794,7 @@ module right_triangle(size=[1,1], center, anchor, spin=0) { // shift = Scalar value to shift the back of the trapezoid along the X axis by. Default: 0 // rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) // chamfer = The Length of the chamfer faces at the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer) +// flip = If true, negative roundings and chamfers will point forward and back instead of left and right. Default: `false`. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Examples(2D): @@ -796,15 +806,23 @@ module right_triangle(size=[1,1], center, anchor, spin=0) { // trapezoid(h=20, w2=10, angle=30); // trapezoid(h=20, w2=30, angle=-30); // trapezoid(w1=30, w2=10, angle=30); -// Example(2D): Chamferred Trapezoid +// Example(2D): Chamfered Trapezoid // trapezoid(h=30, w1=60, w2=40, chamfer=5); +// Example(2D): Negative Chamfered Trapezoid +// trapezoid(h=30, w1=60, w2=40, chamfer=-5); +// Example(2D): Flipped Negative Chamfered Trapezoid +// trapezoid(h=30, w1=60, w2=40, chamfer=-5, flip=true); // Example(2D): Rounded Trapezoid // trapezoid(h=30, w1=60, w2=40, rounding=5); +// Example(2D): Negative Rounded Trapezoid +// trapezoid(h=30, w1=60, w2=40, rounding=-5); +// Example(2D): Flipped Negative Rounded Trapezoid +// trapezoid(h=30, w1=60, w2=40, rounding=-5, flip=true); // Example(2D): Mixed Chamfering and Rounding -// trapezoid(h=30, w1=60, w2=40, rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1); +// trapezoid(h=30, w1=60, w2=40, rounding=[5,0,-10,0],chamfer=[0,8,0,-15],$fa=1,$fs=1); // Example(2D): Called as Function // stroke(closed=true, trapezoid(h=30, w1=40, w2=20)); -function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER, spin=0) = +function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0) = assert(is_undef(h) || is_finite(h)) assert(is_undef(w1) || is_finite(w1)) assert(is_undef(w2) || is_finite(w2)) @@ -817,23 +835,66 @@ function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENT simple = chamfer==0 && rounding==0, h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle)), w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift), - w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift) + w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift), + chamfs = is_num(chamfer)? [for (i=[0:3]) chamfer] : + assert(len(chamfer)==4) chamfer, + rounds = is_num(rounding)? [for (i=[0:3]) rounding] : + assert(len(rounding)==4) rounding, + srads = [for (i=[0:3]) rounds[i]? rounds[i] : chamfs[i]], + rads = v_abs(srads) ) assert(w1>=0 && w2>=0 && h>0, "Degenerate trapezoid geometry.") assert(w1+w2>0, "Degenerate trapezoid geometry.") let( - base_path = [ - [w2/2+shift,h/2], - [-w2/2+shift,h/2], + base = [ + [ w2/2+shift, h/2], + [-w2/2+shift, h/2], [-w1/2,-h/2], - [w1/2,-h/2], + [ w1/2,-h/2], ], - cpath = simple? base_path : - path_chamfer_and_rounding( - base_path, closed=true, - chamfer=chamfer, - rounding=rounding + ang1 = v_theta(base[0]-base[3])-90, + ang2 = v_theta(base[1]-base[2])-90, + angs = [ang1, ang2, ang2, ang1], + qdirs = [[1,1], [-1,1], [-1,-1], [1,-1]], + hyps = [for (i=[0:3]) adj_ang_to_hyp(rads[i],angs[i])], + fluh=echo(), + offs = [ + for (i=[0:3]) let( + xoff = adj_ang_to_opp(rads[i],angs[i]), + a = [xoff, -rads[i]] * qdirs[i].y * (srads[i]<0 && flip? -1 : 1), + b = a + [hyps[i] * qdirs[i].x * (srads[i]<0 && !flip? 1 : -1), 0] + ) b + ], + cpath = [ + each ( + let(i = 0) + rads[i] == 0? [base[i]] : + srads[i] > 0? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i], 90], r=rads[i]) : + flip? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i],-90], r=rads[i]) : + arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],90], r=rads[i]) ), + each ( + let(i = 1) + rads[i] == 0? [base[i]] : + srads[i] > 0? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[90,180+angs[i]], r=rads[i]) : + flip? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[270,180+angs[i]], r=rads[i]) : + arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[90,angs[i]], r=rads[i]) + ), + each ( + let(i = 2) + rads[i] == 0? [base[i]] : + srads[i] > 0? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],270], r=rads[i]) : + flip? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],90], r=rads[i]) : + arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i],-90], r=rads[i]) + ), + each ( + let(i = 3) + rads[i] == 0? [base[i]] : + srads[i] > 0? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[-90,angs[i]], r=rads[i]) : + flip? arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[90,angs[i]], r=rads[i]) : + arc(N=rounds[i]?undef:2, cp=base[i]+offs[i], angle=[270,180+angs[i]], r=rads[i]) + ), + ], path = reverse(cpath) ) simple ? reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, p=path) @@ -841,8 +902,8 @@ function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENT -module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER, spin=0) { - path = trapezoid(h=h, w1=w1, w2=w2, angle=angle, shift=shift, chamfer=chamfer, rounding=rounding); +module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0) { + path = trapezoid(h=h, w1=w1, w2=w2, angle=angle, shift=shift, chamfer=chamfer, rounding=rounding, flip=flip); union() { simple = chamfer==0 && rounding==0; h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle)); @@ -1103,26 +1164,17 @@ module teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0) function teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0) = let( r = get_radius(r=r, d=d, dflt=1), - tanpt = polar_to_xy(r, ang), - tip_y = adj_ang_to_hyp(r, 90-ang), - cap_h = min(default(cap_h,tip_y), tip_y), - cap_w = tanpt.y >= cap_h - ? hyp_opp_to_adj(r, cap_h) - : adj_ang_to_opp(tip_y-cap_h, ang), - ang2 = min(ang,atan2(cap_h,cap_w)), - sa = 180 - ang2, - ea = 360 + ang2, - steps = ceil(segs(r)*(ea-sa)/360), - path = deduplicate( - [ - [ cap_w,cap_h], - for (a=lerpn(ea,sa,steps+1)) r*[cos(a),sin(a)], - [-cap_w,cap_h] - ], closed=true - ), - maxx_idx = max_index(column(path,0)), - path2 = list_rotate(path,maxx_idx) - ) reorient(anchor,spin, two_d=true, path=path2, p=path2, extent=false); + ang2 = 90-ang, + prepath = zrot(90, p=circle(r=r)), + eps=1e-9, + prepath2 = [for (p=prepath) let(a=atan2(p.y,p.x)) if(a<=90-ang2+eps || a>=90+ang2-eps) p], + hyp = is_undef(cap_h) + ? opp_ang_to_hyp(abs(prepath2[0].x), ang) + : adj_ang_to_hyp(cap_h-prepath2[0].y, ang), + p1 = prepath2[0] + polar_to_xy(hyp, 90+ang), + p2 = last(prepath2) + polar_to_xy(hyp, 90-ang), + path = deduplicate([p1, each prepath2, p2], closed=true) + ) reorient(anchor,spin, two_d=true, path=path, p=path, extent=false); diff --git a/shapes3d.scad b/shapes3d.scad index 5c03ec2..603e8d2 100644 --- a/shapes3d.scad +++ b/shapes3d.scad @@ -113,6 +113,7 @@ function cube(size=1, center, anchor, spin=0, orient=UP) = // edges = Edges to mask. See [Specifying Edges](attachments.scad#section-specifying-edges). Default: all edges. // except = Edges to explicitly NOT mask. See [Specifying Edges](attachments.scad#section-specifying-edges). Default: No edges. // trimcorners = If true, rounds or chamfers corners where three chamfered/rounded edges meet. Default: `true` +// teardrop = If given as a number, rounding around the bottom edge of the cuboid won't exceed this many degrees from vertical. If true, the limit angle is 45 degrees. Default: `false` // p1 = Align the cuboid's corner at `p1`, if given. Forces `anchor=FRONT+LEFT+BOTTOM`. // p2 = If given with `p1`, defines the cornerpoints of the cuboid. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` @@ -181,10 +182,32 @@ module cuboid( except=[], except_edges, trimcorners=true, + teardrop=false, anchor=CENTER, spin=0, orient=UP ) { + module xtcyl(l,r) { + if (teardrop) { + teardrop(r=r, l=l, cap_h=r, ang=teardrop, spin=90, orient=DOWN); + } else { + yrot(90) cyl(l=l, r=r); + } + } + module ytcyl(l,r) { + if (teardrop) { + teardrop(r=r, l=l, cap_h=r, ang=teardrop, spin=0, orient=DOWN); + } else { + zrot(90) yrot(90) cyl(l=l, r=r); + } + } + module tsphere(r) { + if (teardrop) { + onion(r=r, cap_h=r, ang=teardrop, orient=DOWN); + } else { + spheroid(r=r, style="octa", orient=DOWN); + } + } module corner_shape(corner) { e = _corner_edges(edges, corner); cnt = sum(e); @@ -197,33 +220,33 @@ module cuboid( if (cnt == 0 || approx(r,0)) { translate(c2) cube(c, center=true); } else if (cnt == 1) { - if (e.x) right(c2.x) xcyl(l=c.x, r=r); - if (e.y) back (c2.y) ycyl(l=c.y, r=r); + if (e.x) right(c2.x) xtcyl(l=c.x, r=r); + if (e.y) back (c2.y) ytcyl(l=c.y, r=r); if (e.z) up (c2.z) zcyl(l=c.z, r=r); } else if (cnt == 2) { if (!e.x) { intersection() { - ycyl(l=c.y*2, r=r); + ytcyl(l=c.y*2, r=r); zcyl(l=c.z*2, r=r); } } else if (!e.y) { intersection() { - xcyl(l=c.x*2, r=r); + xtcyl(l=c.x*2, r=r); zcyl(l=c.z*2, r=r); } } else { intersection() { - xcyl(l=c.x*2, r=r); - ycyl(l=c.y*2, r=r); + xtcyl(l=c.x*2, r=r); + ytcyl(l=c.y*2, r=r); } } } else { if (trimcorners) { - spheroid(r=r, style="octa"); + tsphere(r=r); } else { intersection() { - xcyl(l=c.x*2, r=r); - ycyl(l=c.y*2, r=r); + xtcyl(l=c.x*2, r=r); + ytcyl(l=c.y*2, r=r); zcyl(l=c.z*2, r=r); } } @@ -233,6 +256,7 @@ module cuboid( size = scalar_vec3(size); edges = _edges(edges, except=first_defined([except_edges,except])); + teardrop = is_bool(teardrop)&&teardrop? 45 : teardrop; chamfer = approx(chamfer,0) ? undef : chamfer; rounding = approx(rounding,0) ? undef : rounding; assert(is_vector(size,3)); @@ -240,6 +264,7 @@ module cuboid( assert(is_undef(chamfer) || is_finite(chamfer),"chamfer must be a finite value"); assert(is_undef(rounding) || is_finite(rounding),"rounding must be a finite value"); assert(is_undef(rounding) || is_undef(chamfer), "Cannot specify nonzero value for both chamfer and rounding"); + assert(teardrop==false || (is_finite(teardrop) && teardrop>0 && teardrop<90), "teardrop must be either false or an angle number between 0 and 90") assert(is_undef(p1) || is_vector(p1)); assert(is_undef(p2) || is_vector(p2)); assert(is_bool(trimcorners)); @@ -358,12 +383,12 @@ module cuboid( minkowski() { cube(isize, center=true); if (trimcorners) { - spheroid(r=rounding, style="octa", $fn=sides); + tsphere(r=rounding, $fn=sides); } else { intersection() { + xtcyl(r=rounding, h=rounding*2, $fn=sides); + ytcyl(r=rounding, h=rounding*2, $fn=sides); cyl(r=rounding, h=rounding*2, $fn=sides); - rotate([90,0,0]) cyl(r=rounding, h=rounding*2, $fn=sides); - rotate([0,90,0]) cyl(r=rounding, h=rounding*2, $fn=sides); } } }