From e3369b6b6ef3b83f9a8cdb04bcc89724bb272433 Mon Sep 17 00:00:00 2001 From: Garth Minette Date: Sat, 20 Feb 2021 22:47:50 -0800 Subject: [PATCH] skin.scad docs fixes. --- skin.scad | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/skin.scad b/skin.scad index d6b5225..a75cff8 100644 --- a/skin.scad +++ b/skin.scad @@ -784,14 +784,14 @@ function _find_one_tangent(curve, edge, curve_offset=[0,0,0], closed=true) = // sq = regular_ngon(4,side=2); // hex = apply(rot(60),hexagon(side=2)); // skin(associate_vertices([sq,hex],[[0,0]]), slices=10, refine=10, sampling="segment", z=[0,4]); -// Example: This example shows several polygons, with only a single vertex split at each step: +// Example(3D): This example shows several polygons, with only a single vertex split at each step: // sq = regular_ngon(4,side=2); // pent = pentagon(side=2); // hex = hexagon(side=2); // sep = regular_ngon(7,side=2); // profiles = associate_vertices([sq,pent,hex,sep], [1,3,4]); // skin(profiles ,slices=10, refine=10, method="distance", z=[0,2,4,6]); -// Example: The polygons cannot shrink, so if you want to have decreasing polygons you'll need to concatenate multiple results. Note that it is perfectly ok to duplicate a profile as shown here, where the pentagon is duplicated: +// Example(3D): The polygons cannot shrink, so if you want to have decreasing polygons you'll need to concatenate multiple results. Note that it is perfectly ok to duplicate a profile as shown here, where the pentagon is duplicated: // sq = regular_ngon(4,side=2); // pent = pentagon(side=2); // grow = associate_vertices([sq,pent], [1]); @@ -1142,10 +1142,10 @@ module sweep(shape, transforms, closed=false, caps, convexity=10, // ushape = [[-10, 0],[-10, 10],[ -7, 10],[ -7, 2],[ 7, 2],[ 7, 7],[ 10, 7],[ 10, 0]]; // path_sweep(ushape, knot_path, closed=true, method="natural"); // Example: knot with twist. Note if you twist it the other direction the center section untwists because of the natural twist there. Also compare to the "incremental" method which has less twist in the center. -// function knot(a,b,t) = // rolling knot -// [ a * cos (3 * t) / (1 - b* sin (2 *t)), -// a * sin( 3 * t) / (1 - b* sin (2 *t)), -// 1.8 * b * cos (2 * t) /(1 - b* sin (2 *t))]; +// function knot(a,b,t) = // rolling knot +// [ a * cos (3 * t) / (1 - b* sin (2 *t)), +// a * sin( 3 * t) / (1 - b* sin (2 *t)), +// 1.8 * b * cos (2 * t) /(1 - b* sin (2 *t))]; // a = 0.8; b = sqrt (1 - a * a); // ksteps = 400; // knot_path = [for (i=[0:ksteps-1]) 50 * knot(a,b,(i/ksteps)*360)]; @@ -1155,10 +1155,10 @@ module sweep(shape, transforms, closed=false, caps, convexity=10, // [ a * cos (3 * t) / (1 - b* sin (2 *t)), // a * sin( 3 * t) / (1 - b* sin (2 *t)), // 1.8 * b * cos (2 * t) /(1 - b* sin (2 *t))]; -// a = 0.8; b = sqrt (1 - a * a); -// ksteps = 400; -// knot_path = [for (i=[0:ksteps-1]) 50 * knot(a,b,(i/ksteps)*360)]; -// path_sweep(subdivide_path(pentagon(r=12),30), knot_path, closed=true, twist=-360*8, symmetry=5, method="natural", twist_by_length=false); +// a = 0.8; b = sqrt (1 - a * a); +// ksteps = 400; +// knot_path = [for (i=[0:ksteps-1]) 50 * knot(a,b,(i/ksteps)*360)]; +// path_sweep(subdivide_path(pentagon(r=12),30), knot_path, closed=true, twist=-360*8, symmetry=5, method="natural", twist_by_length=false); // Example: This torus knot example comes from list-comprehension-demos. The knot lies on the surface of a torus. When we use the "natural" method the swept figure is angled compared to the surface of the torus because the curve doesn't follow geodesics of the torus. // function knot(phi,R,r,p,q) = // [ (r * cos(q * phi) + R) * cos(p * phi), @@ -1168,7 +1168,7 @@ module sweep(shape, transforms, closed=false, caps, convexity=10, // points = 50; // points per loop // R = 400; r = 150; // Torus size // p = 2; q = 5; // Knot parameters -// %torus(r=R,r2=r); +// %torus(r_maj=R,r_min=r); // k = max(p,q) / gcd(p,q) * points; // knot_path = [ for (i=[0:k-1]) knot(360*i/k/gcd(p,q),R,r,p,q) ]; // path_sweep(rot(90,p=ushape),knot_path, method="natural", closed=true); @@ -1185,7 +1185,7 @@ module sweep(shape, transforms, closed=false, caps, convexity=10, // points = 50; // points per loop // R = 400; r = 150; // Torus size // p = 2; q = 5; // Knot parameters -// %torus(r=R,r2=r); +// %torus(r_maj=R,r_min=r); // k = max(p,q) / gcd(p,q) * points; // knot_path = [ for (i=[0:k-1]) knot(360*i/k/gcd(p,q),R,r,p,q) ]; // normals = [ for (i=[0:k-1]) knot_normal(360*i/k/gcd(p,q),R,r,p,q) ];