mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
parent
764420e71d
commit
e4bd6238b4
1 changed files with 19 additions and 21 deletions
40
math.scad
40
math.scad
|
@ -773,26 +773,26 @@ function _qr_factor(A,Q, column, m, n) =
|
||||||
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
|
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
|
||||||
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix
|
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix
|
||||||
// is singular (e.g. has a zero on the diagonal) then it returns [].
|
// is singular (e.g. has a zero on the diagonal) then it returns [].
|
||||||
function back_substitute(R, b, transpose = false) =
|
function back_substitute(R, b, x=[],transpose = false) =
|
||||||
assert(is_matrix(R, square=true))
|
assert(is_matrix(R, square=true))
|
||||||
let(n=len(R))
|
let(n=len(R))
|
||||||
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
|
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
|
||||||
transpose
|
!is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) :
|
||||||
? reverse(_back_substitute([for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
|
transpose?
|
||||||
reverse(b)))
|
reverse(back_substitute(
|
||||||
: _back_substitute(R,b);
|
[for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
|
||||||
|
reverse(b), x, false
|
||||||
function _back_substitute(R, b, x=[]) =
|
)) :
|
||||||
let(n=len(R))
|
len(x) == n ? x :
|
||||||
len(x) == n ? x
|
let(
|
||||||
: let(ind = n - len(x) - 1)
|
ind = n - len(x) - 1
|
||||||
R[ind][ind] == 0 ? []
|
)
|
||||||
: let(
|
R[ind][ind] == 0 ? [] :
|
||||||
newvalue = len(x)==0
|
let(
|
||||||
? b[ind]/R[ind][ind]
|
newvalue =
|
||||||
: (b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
|
len(x)==0? b[ind]/R[ind][ind] :
|
||||||
)
|
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
|
||||||
_back_substitute(R, b, concat([newvalue],x));
|
) back_substitute(R, b, concat([newvalue],x));
|
||||||
|
|
||||||
|
|
||||||
// Function: det2()
|
// Function: det2()
|
||||||
|
@ -865,10 +865,8 @@ function determinant(M) =
|
||||||
// n = optional width of matrix
|
// n = optional width of matrix
|
||||||
// square = set to true to require a square matrix. Default: false
|
// square = set to true to require a square matrix. Default: false
|
||||||
function is_matrix(A,m,n,square=false) =
|
function is_matrix(A,m,n,square=false) =
|
||||||
is_list(A)
|
is_list(A[0])
|
||||||
&& len(A)>0
|
&& ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers
|
||||||
&& is_vector(A[0])
|
|
||||||
&& is_vector(A*A[0]) // a matrix of finite numbers
|
|
||||||
&& (is_undef(n) || len(A[0])==n )
|
&& (is_undef(n) || len(A[0])==n )
|
||||||
&& (is_undef(m) || len(A)==m )
|
&& (is_undef(m) || len(A)==m )
|
||||||
&& ( !square || len(A)==len(A[0]));
|
&& ( !square || len(A)==len(A[0]));
|
||||||
|
|
Loading…
Reference in a new issue